[go: up one dir, main page]

Skip to main content
Log in

Super-resolution image reconstruction for mobile devices

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

With advanced mobile devices, the mobile applications of the high-definition display attract a lot of attentions nowadays. The existing image super-resolution methods are computationally inefficient for the high-definition display on the mobile devices. In this paper, we point out that the above critical issue deteriorates the display quality of the high-definition mobile devices. We propose an efficient and effective algorithm to reconstruct the high-resolution images for the mobile devices. Our algorithm outperforms previous approaches in not only smaller running time but also the higher quality of the super-resolution image reconstruction for the mobile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. An app is software running on a mobile device such as a mobile phone, PDAs or MP3 players performing specific tasks typically restricted to desktop or notebook computers. These apps are either pre-installed on the mobile devices during manufacture, or downloaded by users from Apple stores, android market, or other mobile software distribution platforms.

  2. The noise is random additive noise. Gaussian white noise is a special case of the random additive noise. In most cases, since the subsampling is generally much more significant than the noise, we can adopt the Gaussian white noise to model the noise for simplicity [40].

  3. Affine flow approximates the motion of the surface as an affine transformation.

  4. The regularization parameter λ controls the degree of smoothness (i.e., degree of bias) of the solution, and is usually small. Analytical methods for choosing an optimal parameter λ are discussed in [66].

  5. Hadamard [28] defined ill-posed problems whose solution does not exist or it is not unique or it is not stable under perturbations on data. It was with the intent of saving mathematicians and computational scientists substantial time and trouble.

  6. In fact, the inverse of the block-Toeplitz matrix H almost exists [77].

  7. In this paper, the accuracy is defined as the number of the sequences under successfully estimated parameters over the total number of testing sequences.

References

  1. Yau, N.K.B.A.C., Ng, M.K.: An efficient algorithm for superresolution in medium field imaging. Multidimens. Syst. Signal Process. 18(2–3), 173–188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aly, H.A., Dubois, E.: Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. Image Process. 14(10), 1647–1659 (2005)

    Article  MathSciNet  Google Scholar 

  3. Andrey, A.S.K., Nasonov, V.: Fast super-resolution using weighted median filtering. In: International Conference on Pattern Recognition (2010)

  4. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 4, 1035–1038 (1963)

    Google Scholar 

  5. Narayanan, K.E.B.B., Hardie, R.C., Shao, M.: A computationally efficient super-resolution algorithm for video processing using partition filters. IEEE Trans. Circuits Syst. Video Technol. 17(5), 621–634 (2007)

    Google Scholar 

  6. Barrett-Lennard, M.: Second order derivative shapes calculation visualisation and application. Thesis of the Department of Computer Science, The University of Western Australia, pp. 19–24 (1998)

  7. Ben-Ezra, M., Zomet, A., Nayar, S.K.: Video super-resolution using controlled subpixel detector shifts. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 977–987 (2005)

    Article  Google Scholar 

  8. Bergen, J.R., Anandan, P., Hanna, K.J., Hingorani, R.: Hierarchical model-based motion estimation. In: Proceedings of the European Conference on Computer Vision, pp. 237–252 (1992)

  9. Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-domain super-resolution for face recognition. IEEE Trans. Image Process. 12(5), 597–606 (2003)

    Google Scholar 

  10. Brodzik, A.K.: Convex projections algorithm for restoration of limited-angle chromotomographic images. J. Opt. Soc. 16(2), 246–257 (1999)

    Article  Google Scholar 

  11. Burger, W., Burge, M.J.: Digital image Processing—An Algorithmic Introduction Using Java. Springer Publishing, Berlin, pp. 156–171 (2008)

    Book  Google Scholar 

  12. Wang, P.X.C., Lin, W.S.: Improved super-resolution reconstruction from video. IEEE Trans. Circuits Syst. Video Technol. 16(11), 1411–1422 (2006)

    Article  Google Scholar 

  13. Campisi, P., Egiazarian, K.: Blind Image Deconvolution: Theory and Applications. CRC Press Publishing, Boca Raton, pp. 196–237 (2007)

    Book  Google Scholar 

  14. Cannon, M.: Blind deconvolution of spatially invariant image blurs with phase. IEEE Trans. Acoust. Speech Sign. Process. 24(1), 58–63 (1976)

    Article  Google Scholar 

  15. Chan, R.H., Nagy, J.G., Plemmons, R.J.: Fft-based preconditioners for toeplitz-block least squares problems. SIAM J. Numer. Anal. 30(6), 1740–1768 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chun-Yu Lin, C.-C.H., Chia-Wen Lin, L.-W.K.: Fast deconvolution-based image super-resolution using gradient prior. In: IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2011)

  17. Cooley, J.W., Tukey, J.W.: An algorithm for the machine computation of the complex fourier series. Math. Comput. 19, 297–301 (1965)

    Google Scholar 

  18. Dahl, J., Hansen, P.C., Jensen, S.H., Jensen, T.L.: Algorithms and software for total variation image reconstruction via first-order methods. Numer. Algorithms 53, 67–92 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Driggers, R.G.: Encyclopedia of Optical Engineering: Abe-las. CRC Press Publishing, Boca Raton, pp. 412–427 (2003)

    Google Scholar 

  20. Elad, M., Hel-Or, Y.: A fast super-resolution reconstruction algorithm for pure translational motion and common space invariant blur. IEEE Trans. Image Process. 10(8), 1187–1193 (2001)

    Article  MATH  Google Scholar 

  21. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13(10), 1327–1344 (2004)

    Article  Google Scholar 

  22. Freeman, W.T., Liu, C.: Markov random fields for super-resolution and texture synthesis. Advances in Markov Random Fields for Vision and Image Processing, MIT Press, Cambridge, pp. 155–166 (2011)

    Google Scholar 

  23. Caner, G., Tekalp, M., Heinzelman, W.: Super resolution recovery for multi-camera surveillance imaging. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 109–112 (2003)

  24. Callico, J.L.G., Lopez, S., Sarmiento, R.: Low-cost implementation of a super-resolution algorithm for real-time video applications. IEEE Trans. Circuits Syst. Video Technol. 6(1), 23–26 (2005)

    Google Scholar 

  25. Giannis, N.P.G., Chantas, K., Woods, N.A.: Super-resolution based on fast registration and maximum a posteriori reconstruction. IEEE Trans. Image Process. 16(7), 1821–1830 (2007)

    Article  MathSciNet  Google Scholar 

  26. Gilman, A., Bailey, D.G., Marsland, S.: Least-squares optimal interpolation for fast image super-resolution. In: Fifth IEEE International Symposium on Electronic Design, Test and Applications (2010)

  27. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  28. Hadamard, J.: Sur les problemes aux derivees partielles et leur signification physique. Princeton University Bulletin, NJ, pp. 49–52 (1902)

    Google Scholar 

  29. Haiyong Liao, F.L., Ng, M.K.: Selection of regularization parameter in total variation image restoration. IEEE Trans. Image Process. 26(11), 2311–2320 (2009)

    Google Scholar 

  30. Hannuksela, J., Sangi, P., Heikkila, J.: Vision-based motion estimation for interaction with mobile devices. In: Computer Vision and Image Understanding, Vol. 108 of 1–2, Elsevier, Amsterdam, pp. 188–195 (2007)

  31. Hansen, P., O’Leary, D.: The use of the l-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images Matrices, Spectra and Filtering. Springer, Berlin, pp. 71–86 (2006)

    Book  MATH  Google Scholar 

  33. Hardie, R.: A fast image super-resolution algorithm using an adaptive wiener filter. IEEE Trans. Image Process. 16(12), 1953–2964 (2007)

    Article  MathSciNet  Google Scholar 

  34. Hong, H., Zhang, T.: Fast restoration approach for rotational motion blurred image based on deconvolution along the blurring paths. Photo Opt. Instrum. Eng. 12(42), 3471–3486 (2003)

    Google Scholar 

  35. Hung, K.-W., Siu, W.-C.: New motion compensation model via frequency classification for fast video super-resolution. In: IEEE International Conference on Image Processing (ICIP) (2009)

  36. Hyoung Gil Choi, D.J.T., Thite Anand, N.: Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination. J. Sound Vib. 304, 894–917 (2007)

    Article  Google Scholar 

  37. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graph. Models Image Process 53(3), 231–239 (1991)

    Article  Google Scholar 

  38. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Google Scholar 

  39. Kennedy, J.A., Israel, O., Frenkel, A., Bar-Shalom, R., Azhari, H.: Super-resolution in pet imaging. IEEE Trans. Med. Imag. 25(2), 137–147 (2006)

    Google Scholar 

  40. Nagy, J.G., Palmer, K., Perrone, L.: Iterative methods for image deblurring: a matlab object-oriented approach. Numer. Algorithms 36(1), 73–93 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ji, H., Wang, K.: Robust image deblurring with an inaccurate blur kernel. IEEE Trans. Image Process. 21(4), 1624–1634 (2012)

    Article  MathSciNet  Google Scholar 

  42. Jia, K., Gong, S.: Generalized face super-resolution. IEEE Trans. Image Process. 17(6), 873–886 (2008)

    Article  MathSciNet  Google Scholar 

  43. Kishor, M.V.J.A.B.V.S., Upla, P., Gajjar, P.P.: A fast approach for edge preserving super-resolution. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2011)

  44. Krahmer, F., Lin, Y., McAdoo, B., Ott, K., Wang, J., Widemann, D., Wohlberg, M.B.: Blind Image Deconvolution: Motion Blur Estimation. Mathematical Modeling in Industry. Technical Report in University of Minnesota (2006)

  45. Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag. 13(3):43–64 (1996)

    Article  Google Scholar 

  46. Huang, Z.L.L., Xiao, L., Zhang, J.: A fast decoupling algorithm for image super-resolution reconstruction of space-invariant system. Acta Automatica Sinica 36(2), 229–236 (2010)

    Article  Google Scholar 

  47. Lehmann, T.M., Gonner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. IEEE Trans. Med. Imaging 18(11):1049 – 1075 (1999)

    Article  Google Scholar 

  48. Liu, F., Wang, J., Zhu, S., Gleicher, M., Gong, Y.: Noisy video super-resolution. In: Proceeding of the 16th ACM international conference on Multimedia (SIGMM), pp. 713–716 (2008)

  49. Protter, M., Elad, M., Takeda, H., and Milanfar, P.: Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process. 18(1):36–51 (2008)

    Google Scholar 

  50. Dirk Robinson, J.Y.L.M., Toth Cynthia, A., Farsiu, S.: Efficient fourier-wavelet super-resolution. IEEE Trans. Image Process. 19(10), 2669–2681 (2010)

    Article  MathSciNet  Google Scholar 

  51. Tanaka, M.O.M.: A fast map-based super-resolution algorithm for general motion. Proc. SPIE Electr. Imaging 6065, 404–415 (2006)

    Google Scholar 

  52. Maria, P.Y.K.C., Angelopoulou, E., Bouganis, Christos-Savvas, Constantinides, G.A.: Robust real-time super-resolution on fpga and an application to video enhancement. ACM Trans. Reconfig. Technol. Syst. 2(4), 404–415 (2009)

    Google Scholar 

  53. Merino, M.T., Nunez, J.: Super-resolution of remotely sensed images with variable-pixel linear reconstruction. IEEE Trans. Geosci. Remote Sens. 45(5), 1446–1457 (2007)

    Article  Google Scholar 

  54. Michael, N., Denis, K.: Fundamentals of noise and vibration analysis for engineers. Cambridge University Press, Cambridge, pp 344–364 (2003). ISBN 0521499135

  55. Minmin Shen, P.X., Wang, C.: Down-sampling based video coding using super-resolution technique. IEEE Trens. Circuits Syst. Video Technol. 21(6), 755–765 (2011)

    Article  Google Scholar 

  56. Moghaddam, M., Jamzad, M.E.: Finding point spread function of motion blur using radon transform and modeling the motion length. In: Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology (2004)

  57. Nguyen, P.M.N., Golub, G.: A computationally efficient super-resolution image reconstruction algorithm. IEEE Trans. Image Process. 10(4), 573–583 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Nixon, M.S., Aguado, A.S.: Feature extraction and image processing (second edition). Academic Press, Dublin, pp. 195–241 (2008)

    Google Scholar 

  59. Ogale, A.S., Aloimonos, Y.: A roadmap to the integration of early visual modules. Int. J. Comput. Vis. 72, 9–25 (2007)

    Article  Google Scholar 

  60. Oliver Bowen, C.-S.B.: Real-time image super resolution using an fpga. In: International Conference on Field Programmable Logic and Applications (FPL) (2008)

  61. Arbelaez, C.F.P., Maire, M., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–961 (2011)

    Article  Google Scholar 

  62. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing. Pearson Prentice Hall, Upper Saddle River, pp. 261–361 (2007)

    Google Scholar 

  63. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process. 18(1), 36–51 (2009)

    Article  MathSciNet  Google Scholar 

  64. Qi Shan, J.J.C.-K.T., Li, Zhaorong: Fast image/video upsampling. ACM Trans. Graphics 27(5), 1–7 (2008)

    Article  Google Scholar 

  65. Rafael, R.E.W., Gonzalez, C.: Digital Image Processing. Prentice Hall, NJ, pp. 199–300 (2008)

    Google Scholar 

  66. Reaves, S., Mersereau, R.: Optimal regularization parameter estimation for image reconstruction. In: Proc. SPIE Conference on Image Processing Algorithms and Techniques, pp. 127–137 (1991)

  67. Shen, H., Zhang, L., Huang, B., Li, P.: A map approach for joint motion estimation, segmentation, and super resolution. IEEE Trans. Image Process. 16(2), 479–490 (2007)

    Article  MathSciNet  Google Scholar 

  68. Shen, M., Xue, P.: Low-power video acquisition with super-resolution reconstruction for mobile devices. IEEE Trans. Consum. Electron. 56(4), 2520–2528 (2010)

    Google Scholar 

  69. Siddiqui, H., Bouman, C.A.: Training-based color correction for camera phone images. In: IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 733–736 (2007)

  70. Sondhi, M.M.: Image restoration: The removal of spatially invariant degradations. Proc. IEEE 60(7), 842–853 (1972)

    Article  Google Scholar 

  71. Suresh, K.V., Rajagopalan, A.N.: Robust and computationally efficient superresolution algorithm. Int. J. Opt. Soc. 24(4), 984–992 (2007)

    Article  Google Scholar 

  72. Chan, A.C.Y.T.F., Ng, M.K., Yip, A.M.: Superresolution image reconstruction using fast inpainting algorithms. Appl. Comput. Harmon. Anal. 23(1), 3–24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  73. Takeda, H., Milanfar, P., Protter, M., Elad, M.: Super-resolution without explicit subpixel motion estimation. IEEE Trans. Image Process. 18(9), 1958–1975 (2009)

    Article  MathSciNet  Google Scholar 

  74. Tomasz Szydzik, G.M.C., Nunez, A.: Efficient fpga implementation of a high-quality super-resolution algorithm with real-time performance. IEEE Trans. Consumer Electron. 57(2), 664–672 (2011)

    Google Scholar 

  75. Varsha, H.K.P., Patil, H., Bormane Dattatraya, S.: Real time super resolution image reconstruction. In: International Conference on Intelligent and Advanced Systems (2007)

  76. Wang, J., Gong, Y.: Fast image super-resolution using connected component enhancement. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 157–160 (2008)

  77. Wax, M., Kailath, T.: Efficient inversion of toeplitz-block toeplitz matrix. IEEE Trans. Acoust. Speech Signal Process. 31(5), 1218–1221 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  78. Xiao, F., Farrell, J., Catrysse, P., Wandell, B.: Mobile imaging: the big challenge of the small pixel. In: Digital Photography, Vol. 7250. SPIE, p. 72500 (2009)

  79. Xiong, Z., Zhang, Y. (2009) A novel interest-point-matching algorithm for high-resolution satellite images. IEEE Trans. Geosci. Remote Sens. 47(12), 137–147

    Google Scholar 

  80. Yagle, A.E., Al-Salem, F.M.: Fast non-iterative single-blur 2-d blind deconvolution of separable and low-rank point-spread functions from finite-support images. In: Proceedings of SPIE, D, Vol. 5205, pp. 390–398 (2003)

  81. Yitzhaky, Y., Kopeika, N.S.: Identification of blur parameters from motion blurred images. CVGIP Graph. Models Image Process. 59(5), 321–332 (1997)

    Article  Google Scholar 

  82. Jie, Z.X. YUAN, Si-dan, DU.: Fast super-resolution for license plate image reconstruction. In: International Conference on Pattern Recognition (ICPR) (2008)

  83. Zhang, X.: A computationally efficient super-resolution reconstruction algorithm based on the hybrid interpolation. J. Comput. 5(6), 885–893 (2010)

    Google Scholar 

  84. Zhou Wang, H.R.S., Conrad Bovik, Alan, Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4):600–613 (2004)

    Article  Google Scholar 

  85. Zibetti, M.V.W., Mayer, J.: A robust and computationally efficient simultaneous super-resolution scheme for image sequences. IEEE Trans. Circuits Syst. Video Technol. 17(10), 1288–1300 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the National Science Council of Taiwan, ROC, under Contracts NSC-101-2221-E-025-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hua Chu.

Additional information

Communicated by C. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, CH. Super-resolution image reconstruction for mobile devices. Multimedia Systems 19, 315–337 (2013). https://doi.org/10.1007/s00530-012-0276-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-012-0276-y

Keywords

Navigation