[go: up one dir, main page]

Skip to main content

Advertisement

Log in

A wrapper-filter feature selection technique based on ant colony optimization

  • Hybrid Artificial Intelligence and Machine Learning Technologies
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Ant colony optimization (ACO) is a well-explored meta-heuristic algorithm, among whose many applications feature selection (FS) is an important one. Most existing versions of ACO are either wrapper based or filter based. In this paper, we propose a wrapper-filter combination of ACO, where we introduce subset evaluation using a filter method instead of using a wrapper method to reduce computational complexity. A memory to keep the best ants and feature dimension-dependent pheromone update has also been used to perform FS in a multi-objective manner. Our proposed approach has been evaluated on various real-life datasets, taken from UCI Machine Learning repository and NIPS2003 FS challenge, using K-nearest neighbors and multi-layer perceptron classifiers. The experimental outcomes have been compared to some popular FS methods. The comparison of results clearly shows that our method outperforms most of the state-of-the-art algorithms used for FS. For measuring the robustness of the proposed model, it has been additionally evaluated on facial emotion recognition and microarray datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Contributors W (2015) Curse of dimensionality. Wikipedia, Free Encycl

  2. Ghosh M, Begum S, Sarkar R et al (2019) Recursive Memetic Algorithm for gene selection in microarray data. Expert Syst Appl 116:172–185. https://doi.org/10.1016/j.eswa.2018.06.057

    Article  Google Scholar 

  3. Liu H, Motoda H (2007) Computational methods of feature selection. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature selection using feature similarity. IEEE Trans Pattern Anal Mach Intell 24:301–312

    Article  Google Scholar 

  5. Shang W, Huang H, Zhu H et al (2007) A novel feature selection algorithm for text categorization. Expert Syst Appl 33:1–5

    Article  Google Scholar 

  6. Yang J, Honavar V (1998) Feature subset selection using a genetic algorithm. IEEE Intell Syst Appl 13:44–49

    Article  Google Scholar 

  7. Moradi P, Gholampour M (2016) A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy. Appl Soft Comput J 43:117–130. https://doi.org/10.1016/j.asoc.2016.01.044

    Article  Google Scholar 

  8. Forsati R, Moayedikia A, Jensen R et al (2014) Enriched ant colony optimization and its application in feature selection. Neurocomputing 142:354–371. https://doi.org/10.1016/j.neucom.2014.03.053

    Article  Google Scholar 

  9. Duval B, Hao J-K, Hernandez Hernandez JC (2009) A memetic algorithm for gene selection and molecular classification of cancer. In: Proceedings of 11th annual conference genetic evolutionary computation—GECCO’09 201. https://doi.org/10.1145/1569901.1569930

  10. Zhu Z, Ong YS, Dash M (2007) Markov blanket-embedded genetic algorithm for gene selection. Pattern Recognit 40:3236–3248. https://doi.org/10.1016/j.patcog.2007.02.007

    Article  MATH  Google Scholar 

  11. Fogel DB (1994) An introduction to simulated evolutionary optimization. IEEE Trans Neural Netw 5:3–14

    Article  Google Scholar 

  12. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  13. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132

    MathSciNet  MATH  Google Scholar 

  14. Forsati R, Moayedikia A, Keikha A, Shamsfard M (2012) A novel approach for feature selection based on the bee colony optimization. Int J Comput Appl 43:30–34

    Google Scholar 

  15. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  16. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  17. Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput 44:148–175

    Article  Google Scholar 

  18. Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88

    Article  Google Scholar 

  19. Mafarja M, Mirjalili S (2018) Whale optimization approaches for wrapper feature selection. Appl Soft Comput 62:441–453

    Article  Google Scholar 

  20. Mafarja MM, Mirjalili S (2017) Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260:302–312

    Article  Google Scholar 

  21. Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381. https://doi.org/10.1016/j.neucom.2015.06.083

    Article  Google Scholar 

  22. Wei J, Zhang R, Yu Z et al (2017) A BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selection. Appl Soft Comput J 58:176–192. https://doi.org/10.1016/j.asoc.2017.04.061

    Article  Google Scholar 

  23. Ghosh M, Guha R, Mondal R et al (2018) Feature selection using histogram-based multi-objective GA for handwritten Devanagari numeral recognition. In: Bhateja V, Coello Coello C, Satapathy S, Pattnaik P (eds) Intelligent engineering informatics. Advances in intelligent systems and computing. Springer, Singapore, pp 471–479. https://doi.org/10.1007/978-981-10-7566-7_46

    Chapter  Google Scholar 

  24. Dorigo M, Stützle T (2019) Ant colony optimization: overview and recent advances. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. Springer, Cham, pp 311–351. https://doi.org/10.1007/978-3-319-91086-4_10

    Chapter  Google Scholar 

  25. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26:29–41

    Article  Google Scholar 

  26. Gambardella LM, Dorigo M (1996) Solving symmetric and asymmetric TSPs by ant colonies. In: Proceedings of IEEE international conference on Evolutionary computation, 1996. IEEE, pp 622–627

  27. Stützle T, Hoos HH (2000) MAX–MIN ant system. Futur Gener Comput Syst 16:889–914

    Article  Google Scholar 

  28. Zhang Z, Feng Z (2012) Two-stage updating pheromone for invariant ant colony optimization algorithm. Expert Syst Appl 39:706–712

    Article  Google Scholar 

  29. Aghdam MH, Ghasem-Aghaee N, Basiri ME (2009) Text feature selection using ant colony optimization. Expert Syst Appl 36:6843–6853. https://doi.org/10.1016/j.eswa.2008.08.022

    Article  Google Scholar 

  30. Tabakhi S, Moradi P, Akhlaghian F (2014) An unsupervised feature selection algorithm based on ant colony optimization. Eng Appl Artif Intell 32:112–123. https://doi.org/10.1016/j.engappai.2014.03.007

    Article  Google Scholar 

  31. Tabakhi S, Moradi P (2015) Relevance-redundancy feature selection based on ant colony optimization. Pattern Recognit 48:2798–2811. https://doi.org/10.1016/j.patcog.2015.03.020

    Article  Google Scholar 

  32. Tabakhi S, Najafi A, Ranjbar R, Moradi P (2015) Gene selection for microarray data classification using a novel ant colony optimization. Neurocomputing 168:1024–1036. https://doi.org/10.1016/j.neucom.2015.05.022

    Article  Google Scholar 

  33. Markid HY, Dadaneh BZ, Moghaddam ME (2015) Bidirectional ant colony optimization for feature selection. In: The international symposium on artificial intelligence and signal processing (AISP). IEEE, Mashhad. https://doi.org/10.1109/AISP.2015.7123519

  34. Kashef S, Nezamabadi-pour H (2015) An advanced ACO algorithm for feature subset selection. Neurocomputing 147:271–279. https://doi.org/10.1016/j.neucom.2014.06.067

    Article  Google Scholar 

  35. Moradi P, Rostami M (2015) Integration of graph clustering with ant colony optimization for feature selection. Knowl Based Syst 84:144–161. https://doi.org/10.1016/j.knosys.2015.04.007

    Article  Google Scholar 

  36. Ghimatgar H, Kazemi K, Helfroush MS, Aarabi A (2018) An improved feature selection algorithm based on graph clustering and ant colony optimization. Knowl Based Syst 159:270–285

    Article  Google Scholar 

  37. Sreeja NK, Sankar A (2015) Pattern matching based classification using Ant Colony Optimization based feature selection. Appl Soft Comput J 31:91–102. https://doi.org/10.1016/j.asoc.2015.02.036

    Article  Google Scholar 

  38. (2018) Computational complexity of machine learning algorithms. https://www.thekerneltrip.com/machine/learning/computational-complexity-learning-algorithms/. Accessed 15 Feb 2019

  39. Kabir MM, Shahjahan M, Murase K (2012) A new hybrid ant colony optimization algorithm for feature selection. Expert Syst Appl 39:3747–3763. https://doi.org/10.1016/j.eswa.2011.09.073

    Article  Google Scholar 

  40. Fallahzadeh O, Dehghani-Bidgoli Z, Assarian M (2018) Raman spectral feature selection using ant colony optimization for breast cancer diagnosis. Lasers Med Sci 33(8):1799–1806

    Article  Google Scholar 

  41. Sweetlin JD, Nehemiah HK, Kannan A (2018) Computer aided diagnosis of pulmonary hamartoma from CT scan images using ant colony optimization based feature selection. Alex Eng J 57:1557–1567

    Article  Google Scholar 

  42. Yin Z, Du C, Liu J et al (2018) Research on autodisturbance-rejection control of induction motors based on an ant colony optimization algorithm. IEEE Trans Ind Electron 65:3077–3094

    Article  Google Scholar 

  43. Parvin H, Moradi P, Esmaeili S (2019) TCFACO: trust-aware collaborative filtering method based on ant colony optimization. Expert Syst Appl 118:152–168

    Article  Google Scholar 

  44. Uthayakumar J, Metawa N, Shankar K, Lakshmanaprabu SK (2018) Financial crisis prediction model using ant colony optimization. Int J Inf Manag. https://doi.org/10.1016/j.ijinfomgt.2018.12.001

    Article  Google Scholar 

  45. Langner O, Dotsch R, Bijlstra G et al (2010) Presentation and validation of the radboud faces database. Cognit Emot 24:1377–1388. https://doi.org/10.1080/02699930903485076

    Article  Google Scholar 

  46. Hamamoto Y, Uchimura S, Watanabe M et al (1998) A Gabor filter-based method for recognizing handwritten numerals. Pattern Recognit 31:395–400. https://doi.org/10.1016/S0031-3203(97)00057-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Guha, R., Sarkar, R. et al. A wrapper-filter feature selection technique based on ant colony optimization. Neural Comput & Applic 32, 7839–7857 (2020). https://doi.org/10.1007/s00521-019-04171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04171-3

Keywords