[go: up one dir, main page]

Skip to main content
Log in

An experimental demonstration of hybrid fuzzy-fuzzy space-vector control on AC variable speed drives

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This work presents the experimental demonstration of a hybrid fuzzy-fuzzy controller speed control of a squirrel-cage induction motor variable speed drive based on the space-vector pulse width modulation technique by means of digital signal processing. In particular, two features of field-oriented control were engaged to design a hybrid fuzzy-fuzzy controller, namely the current and frequency. In order to overcome the limitations of the field-oriented control technique, the principle of the hybrid fuzzy-fuzzy controller is introduced in the course of the acceleration–deceleration stages to regulate the speed of the rotor with the help of a fuzzy frequency controller. Conversely, a fuzzy stator current magnitude controller was involved during the steady-state. The results revealed that the control approach has the ability to deliver a practical control solution in the presence of diverse operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

ABC:

Artificial bee colony

AC:

Alternate current

ACO:

Ant colony optimization

A/D:

Analog to digital converter

ANN:

Artificial neural network

BF:

Bacteria foraging

BSA:

Bat search algorithm

CCS:

Code composer studio

DAQ:

Data acquisition card

DC:

Direct current

DFOC:

Direct field-oriented control

DMC:

Digital motor control

DSP:

Digital signal processing

DTC:

Direct torque control

FFA:

Firefly algorithm

FL:

Feedback linearization

FLC:

Fuzzy logic control

FOC:

Field-oriented control

Fuzzy-PI:

Fuzzy proportional-integral control

GA:

Genetic algorithm

HFFC:

Hybrid fuzzy-fuzzy control

HFPIC:

Hybrid fuzzy-PI control

ICA:

Imperialist competitive algorithm

IFOC:

Indirect field-oriented control

IM:

Induction motor

PI:

Proportional-integral control

PC:

Personal computer

PSO:

Particle swarm optimization

PWM:

Pulse width modulation

QEP:

Quadrature encoder pulse

SCIM:

Squirrel-cage induction motor

SMC:

Sliding mode control

SVPWM:

Space-vector PWM

USB:

Universal serial bus

VSI:

Voltage source inverter

References

  1. M. Irfan, N. Saad, R. Ibrahim, V. S. Asirvadam, and M. Magzoub (2016) An online fault diagnosis system for induction motors via instantaneous power analysis. Tribol. Trans., no. June, pp. 1–13

  2. T. Andrzej (2001) Control of induction motors. Academic Press

  3. Hanumant S, Akshay A, Vishal G (2014) Speed control of induction motor using vector control technique. Int. J. Eng. Res. Technol. 3(4):2399–2405

    Google Scholar 

  4. Gutierrez-Villalobos J, Rodriguez-Resendiz J, Rivas-Araiza E, Martínez-Hernández M (2015) Sensorless FOC performance improved with on-line speed and rotor resistance estimator based on an artificial neural network for an induction motor drive. Sensors 15(7):15311–15325

    Article  Google Scholar 

  5. S. J. N. Chandra and D. Nikhitha (2013) Modeling and simulation of IM drive performance using PI, ANN and FLC,” in 2013 International Conference on IT Convergence and Security, ICITCS 2013, pp. 1–4

  6. Wang S-Y, Tseng C-L, Lin S-C, Chiu C-J, Chou J-H (2015) An adaptive supervisory sliding fuzzy cerebellar model articulation controller for sensorless vector-controlled induction motor drive systems. Sensors 15(4):7323–7348

    Article  Google Scholar 

  7. Saghafinia A, Ping H, Uddin M (2013) Sensored field oriented control of a robust induction motor drive using a novel boundary layer fuzzy controller. Sensors 13(12):17025–17056

    Article  Google Scholar 

  8. Kamini D, Shailendra G, Deepak N (2014) Speed control of 3-phase induction motor using self-tuning fuzzy PID controller and conventional PID controller. Int. J. Inf. Comput. Technol. 4(12):1185–1193

    Google Scholar 

  9. Pravallika S, Dinakara Prasad Reddy P, Chandra Sekhar J (2015) Optimization of speed control of induction motor using self tuned PI plus fuzzy hybrid controller. Int. J. Emerg. Technol. Adv. Eng. 5(1):258–262

    Google Scholar 

  10. Riaz AS, Dinakara Prasad Reddy P, Chandra SJN (2015) Speed control of induction motor by using intelligence techniques. Int. J. Eng. Res. Appl. 5(1):130–135

    Google Scholar 

  11. Raja CHVN, Jaya Raju M (2015) Speed control of induction motor by Z-N method and genetic algorithm optimization with PI and PID controller. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 3(3):15–20

    Google Scholar 

  12. Vineet Kumar T, Abdul Z, Satyam P (2014) Speed control of induction motor fed from wind turbine using genetic algorithm. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 3(8):11457–11465

    Google Scholar 

  13. Oshaba AS, Abd Elazim SM, Ali ES (2015) Artificial bee colony algorithm based maximum power point tracking in photovoltaic system. WSEAS Trans. Power Syst. 10:123–134

    Google Scholar 

  14. E. Essamudin A. (2014) Artificial bee colony-based design of optimal on-line self-tuning PID-controller fed AC drives. Int. J. Eng. Res. 3(12):807–811

    Google Scholar 

  15. Oshaba AS, Elazim SMA, Ali ES (2015) ACO based speed control of SRM fed by photovoltaic system. Int. J. Electr. Power Energy Syst. 67:529–536

    Article  Google Scholar 

  16. Ali ES (2015) Speed control of DC series motor supplied by photovoltaic system via firefly algorithm. Neural Comput. Appl. 26(6):1321–1332

    Article  Google Scholar 

  17. Oshaba A, Ali E (2013) Speed control of induction motor fed from wind turbine via particle swarm optimization based PI controller. Res. J. Appl. Sci. Eng. Technol. 5(18):4594–4606

    Article  Google Scholar 

  18. Eissa M, Virk G, Ghith E, Ghany A (2013) Optimum induction motor speed control technique using particle swarm optimization. Int. J. Energy Eng. 3(2):65–73

    Google Scholar 

  19. Oshaba A, Ali E (2013) Swarming speed control for DC permanent magnet motor drive via pulse width modulation technique and DC/DC converter. Res. J. Appl. Sci. Eng. Technol. 5(18):4576–4583

    Article  Google Scholar 

  20. A. Kaveh (2014) Advances in metaheuristic algorithms for optimal design of structures. Springer

  21. Oshaba A, Ali E (2014) Assessment study on speed control of DC series motor fed by photovoltaic system via bacterial foraging. J. Electr. Eng. 14(3):1–9

    Google Scholar 

  22. Oshaba A, Ali E (2014) Bacteria foraging: a new technique for speed control of DC series motor supplied by photovoltaic system. WSEAS Trans. Power Syst. 9:185–195

    Google Scholar 

  23. Muralidharan D, Elakkiya M (2014) Performance enhancement of three phase squirrel cage induction motor using BFOA. Int. J. Eng. Res. Gen. Sci. 2(6):720–728

    Google Scholar 

  24. Abd-Elazi S M, Ali ES (2013) Power system stability enhancement via bacteria foraging optimization algorithm. Arab. J. Sci. Eng. 38(3):599–611

    Article  Google Scholar 

  25. Elazim AS, Ali E (2013) Synergy of particle swarm optimization and bacterial foraging for TCSC damping controller design. WSEAS Trans. Power Syst. 8(2):74–84

    Google Scholar 

  26. Hamed S, Behrooz V, Majid E (2013) A robust PID controller based on imperialist competitive algorithm for load- frequency control of power systems. ISA Trans. 52(1):88–95

    Article  Google Scholar 

  27. Abdullah Al K, Seyedmohsen H (2015) Fuzzy adaptive imperialist competitive algorithm for global optimization. Neural Comput. Appl. 26(4):813–825

    Article  Google Scholar 

  28. Lukasz S, Mehdi N (2014) Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm. Neural Comput. Appl. 25(7–8):1627–1638

    Google Scholar 

  29. Ali E (2014) Optimization of Power System Stabilizers using BAT search algorithm. Int. J. Electr. Power Energy Syst. 61:683–690

    Article  Google Scholar 

  30. Ali E (2015) ICA-based speed control of induction motor fed by wind turbine. Neural Comput & Applic: 1–9. doi:10.1007/s00521-015-2092-8

  31. Brian H, Longya X, Yifan T (1997) Fuzzy logic enhanced speed control of an indirect field oriented induction machine drive. IEEE Trans. Power Electron. 12(5):772–778

    Article  Google Scholar 

  32. Chich Yi H, Tien Chi C, Ching Lien H (1999) Robust control of induction motor with a neural-network load torque estimator and a neural-network identification. IEEE Trans. Ind. Electron. 46(5):990–998

    Article  Google Scholar 

  33. Hsin-Jang S, Kuo-Kai S (1999) Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive. IEEE Trans. Ind. Electron. 46(2):380–389

    Article  Google Scholar 

  34. Uddin M, Radwan T, Azizur R (2002) Performances of fuzzy-logic-based indirect vector control for induction motor drive. IEEE Trans. Ind. Appl. 38(5):1219–1225

    Article  Google Scholar 

  35. Koshkouei A, Zinober A, B. Keith J. (2004) Adaptive sliding mode backstepping control of nonlinear systems with unmatched uncertainty. Asian J. Control 6(4):447–453

    Article  Google Scholar 

  36. Boukas T, Habetler T (2004) High-performance induction motor speed control using exact feedback linearization with state and state derivative feedback. IEEE Trans. Power Electron. 19(4):1990–1996

    Article  Google Scholar 

  37. W. Chung-Yuen, K. Duek Heon, and B. Bose (1992) An induction motor servo system with improved sliding mode control,” in Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, pp. 60–66

  38. Utkin V (1993) Sliding mode control design principles and applications to electric drives. Ind. Electron. IEEE Trans. 40(1):23–36

    Article  Google Scholar 

  39. U. Vadim, G. Jurgen, and S. Jingxin (2009) Sliding mode control in electro-mechanical systems. CRC press

  40. Mohamed A, Abdel Ghani A, Youcef R, Abdel Kader Z (2007) Sliding mode speed and flux control of field-oriented induction machine. Acta Electrotech. Inform. 7(1):1–7

    Google Scholar 

  41. Fallaha CJ, Maarouf S, Hadi Youssef K, Kamal A-H (2011) Sliding-mode robot control with exponential reaching law. IEEE Trans. Ind. Electron. 58(2):600–610

    Article  Google Scholar 

  42. T. Brehm and K. Rattan (1896) Hybrid fuzzy logic PID controller,” In Proceedings of 1994 I.E. 3rd International Fuzzy Systems Conference, pp. 1682–1687

  43. R. A R Norouzzadeh and H. D. Taghirad (2009) A novel hybrid fuzzy-PID controller for tracking control of robot manipulators,” in Proceedings of the 2008 I.E. International Conference on Robotics and Biomimetics, pp. 1625–1630

  44. I. Erenoglu, E. Yesil, I. Eksin, and M. Guzelkaya (2006) An intelligent hybrid fuzzy PID controller,” in Proceeding of the 20th European Conference on Modeling and Simulation, vol. 5, no. Cd, pp. 1–5

  45. Zhen Yu Z, Masayoshi T, Satoru I (1993) Fuzzy gain scheduling of PID controllers. IEEE Trans. Syst. Man Cybern. 23(5):1392–1398

    Article  Google Scholar 

  46. Solihin M, Legowo A (2009) Fuzzy-tuned PID anti-swing control of automatic gantry crane. J. Vib. Control 16(1):127–145

    Article  MATH  Google Scholar 

  47. Paramasivam S, Arumugam R (2005) Hybrid fuzzy controller for speed control of switched reluctance motor drives. Energy Convers. Manag. 46(9–10):1365–1378

    Article  Google Scholar 

  48. A. Rahideh and M. Shaheed (2006) Hybrid fuzzy-PID-based control of a twin rotor MIMO system. In IECON Proceedings (Industrial Electronics Conference), pp. 49–54

  49. Sang Min K, Woo Yong H (2006) Induction motor servo drive using robust PID-like neuro-fuzzy controller. Control Eng. Pract. 14(5):481–487

    Article  Google Scholar 

  50. H. Liu and J. Xu (2008) Research of hybrid fuzzy-PID control technology based on the temperature and humidity control. In 2008 International Symposium on Computational Intelligence and Design, pp. 190–193

  51. N. Saad, M. A. Magzoub, R. Ibrahim, and M. Irfan(2015) An optimized hybrid fuzzy-fuzzy controller for PWM-driven variable speed drives. In Induction Motors - Applications, Control and Fault Diagnostics, R. Gregor, Ed. InTech, pp. 231–261

  52. Takahashi I, Noguchi T (1986) A new quick-response and high-efficiency control strategy of an induction motor. Ind. Appl. IEEE Trans. IA-22(5):820–827

    Article  Google Scholar 

  53. K. Shi, Y. Wong, and T. Chan (2001) A novel hybrid fuzzy /PI two-stage controller for an induction motor drive. In IEEE International Electric Machines & Drives Conference pp. 415–421

  54. K. Shi, Y. Wong, and T. Chan (1998) Hybrid fuzzy two-stage controller for an induction Motor. In The IEEE International Conference on Systems, Man, and Cybernetics, pp. 1898–1903

  55. Ying Shieh K (2008) Design and implementation of a high-performance PMLSM drives using DSP chip. IEEE Trans. Ind. Electron. 55(3):1341–1351

    Article  Google Scholar 

  56. S. Mondal, B. Bose, J. Pinto, and Oleschuk (2002) Space vector pulse width modulation of three-level inverter extending operation into overmodulation region. In Proceedings 2002 I.E. 33rd Annual Power Electronics Specialists Conference (PESC’02), vol. 18, no. 2, pp. 497–502

  57. Bose BK (2002) Modern power electronics and AC drives. Prentice Hall PTR, NJ

    Google Scholar 

  58. A. Hughes (2006) Electric motors and drives fundamentals, types and applications. Elsevier

  59. J. Jin-Woo (2005) Project#2 space vector PWM inverter

  60. Vinoth KK, Prawin Angel M, Suresh JPS, Kumar (2010) Simulation and comparison of SPWM and SVPWM control for three phase inverter. ARPN J. Eng. Appl. Sci. 5(7):61–74

    Google Scholar 

  61. H. Jin , Y. Zhao, and D-Z Wang (2009) Simulation study of AC motor speed sensorless vector control system based on SVPWM,” in 2009 Ninth International Conference on Hybrid Intelligent Systems, vol. 1, pp. 524–528

  62. Ooi C, Rahim N, Hew W, Kuan L (2009) FPGA-based field-oriented control for induction motor speed drive. IEICE Electron. Express 6(6):290–296

    Article  Google Scholar 

  63. J. Michael (1989) Industrial control electronics, applications and design. Prentice-Hall International Editions

Download references

Acknowledgements

The contributions of Universiti Teknologi PETRONAS (UTP) in terms of a graduate assistantship scheme award and the Universiti Research Internal Fund (URIF) No. 10/2013 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muawia Magzoub.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magzoub, M., Saad, N., Ibrahim, R. et al. An experimental demonstration of hybrid fuzzy-fuzzy space-vector control on AC variable speed drives. Neural Comput & Applic 31 (Suppl 2), 777–792 (2019). https://doi.org/10.1007/s00521-017-3008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3008-6

Keywords