[go: up one dir, main page]

Skip to main content
Log in

Bayesian inversion method for 3D dental X-ray imaging

Bayes'sche Inversion für dreidimensionale Röntgentomografie in der Zahnmedizin

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Summary

Diagnostic and operational tasks in dentistry require three-dimensional (3D) information about tissue. A novel type of low dose dental 3D X-ray imaging is considered. Given projection images taken from a few sparsely distributed directions using the dentist's regular X-ray equipment, the 3D X-ray attenuation function is reconstructed. This is an ill-posed inverse problem, and Bayesian inversion is a well suited framework for reconstruction from such incomplete data. The reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete data. A parallelized Bayesian method (implemented for a Beowulf cluster computer) for 3D reconstruction in dental radiology is presented (the method was originally presented in (Kolehmainen et al., 2006)). The prior model for dental structures consists of a weighted l 1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posterior (MAP) estimate. The method is tested with in vivo patient data and shown to outperform the reference method (tomosynthesis).

Zusammenfassung

Diagnostische und operative Zahnmedizin erfordert dreidimensionale (3D) Gewebeinformation. In diesem Beitrag wird eine neue Art der schwachdosierten 3D-Röntgentomografie untersucht. Die Rekonstruktion der 3D-Dämpfungsverteilung erfolgt aus nur wenigen Projektionen, die mit handelsüblichen Röntgenapparaten aufgenommen werden. Das inverse Problem ist als Bayes'sches Schätzproblem formuliert, in dem a priori Information zur Kompensation der unvollständigen Messdaten berücksichtigt wird. Zur Lösung des inversen Problems wird eine parallelisierte Bayes'sche Methode für 3D-Röntgentomografie (implementiert für einen Beowulf-Rechencluster) vorgeschlagen. Diese Art der Rekonstruktion wurde in (Kolehmainen et al., 2006) präsentiert. Das verwendete A priori-Modell besteht aus einer Kombination einer gewichteten (l1-prior, einer total variation (TV) prior und einer Positivitätsprior. Das inverse Problem kann als Suche nach dem Maximum a posterior (MAP)-Zustand betrachtet werden. Die vorgeschlagene Methode wird anhand von In vivo-Patientendaten getestet und zeigt eine signifikante Verbesserung gegenüber der üblichen Methode (tomosynthesis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balay, S., Buchelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. E., Zhang, H. (1995): PETSc Users Manual. Argonne National Laboratory ANL-95/11, revision 2.1.5 edition.

  • Barzilai, J., Borwein, J. M. (1988): Two point step size gradient method. IMA J. Numer. Anal. 8: 141–148.

    Article  MATH  MathSciNet  Google Scholar 

  • Bouman, C., Sauer, K. (1993): A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Processing 2: 296–310.

    Article  Google Scholar 

  • Brocklebank, L. (1997): Dental Radiology – Understanding the X-ray Image: Oxford University Press. ISBN 0-19-262411-3.

  • Dobson, D. C., Santosa, F. (1994): An image enhancement technique for electrical impedance tomography. Inv. Probl. 10: 317–334.

    Article  MATH  MathSciNet  Google Scholar 

  • Dobson, D. C., Santosa, F. (1996): Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56: 1181–1198.

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D. L., Johnstone, I. M., Hoch, J. C., Stern, A. S. (1992): Maximum entropy and the nearly black object. J. Roy. Statist. Ser. B 54: 41–81.

    MATH  MathSciNet  Google Scholar 

  • Ekestubbe, A., Gröndahl, K., Gröndahl, H.-G. (1997): The use of tomography for dental implant planning. Dentomaxillofacial Radiology 26: 206–213.

    Article  Google Scholar 

  • Fiacco, A. V., McCormick, G. P. (1990): Nonlinear programming: sequential unconstrained minimization techniques. SIAM.

  • Frese, T., Bouman, C., Sauer, K. (2002): Adaptive wavelet graph model for Bayesian tomographic reconstruction. IEEE Trans. Image Processing 11: 756–770.

    Article  Google Scholar 

  • Gropp, W., Lusk, E., Doss, N., Skjellum, A. (1996): A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing 22: 789–828.

    Article  MATH  Google Scholar 

  • Hanson, K. M. (1987): Bayesian and related methods in image reconstruction from incomplete data. Image Recovery: Theory and Applications. Academic, Orlando.

    Google Scholar 

  • Hanson, K. M., Cunningham, G. S., McKee, R. (1997): Uncertainty assessment for reconstructions based on deformable geometry. Int. J. Imaging Syst. Technol. 8: 506–512.

    Article  Google Scholar 

  • Hanson, K. M., Wecksung, G. W. (1983): Bayesian approach to limited-angle reconstruction in computed tomography. J. Opt. Soc. Am. 73: 1501–1509.

    Article  Google Scholar 

  • Kaipio, J. P., Somersalo, E. (2004): Statistical and Computational Methods for Inverse Problems. Number 160 in Applied Mathematical Sciences. New York: Springer. ISBN: 0-387-22073-9.

    Google Scholar 

  • Kolehmainen, V., Siltanen, S., Järvenpää, S., Kaipio, J. P., Koistinen, P., Lassas, M., Pirttila, J., Somersalo, E. (2003): Statistical inversion for medical X-ray tomography with few radiographs II: Application to dental radiology. Phys. Med. Biol. 48: 1465–1490.

    Article  Google Scholar 

  • Kolehmainen, V., Vanne, A., Siltanen, S., Järvenpää, S., Kaipio, J. P., Lassas, M., Kalke, M. (2006): Parallelized Bayesian inversion for three-dimensional dental X-ray imaging. IEEE Trans. Med. Im. 25: 218–228.

    Article  Google Scholar 

  • Mosegaard, M., Sambridge, M. (2002): Monte Carlo analysis of inverse problems. Inv. Probl. 18: R29–R54.

    Article  MATH  MathSciNet  Google Scholar 

  • Natterer, F. (1986): The Mathematics of Computerized Tomography. Chichester, USA: John Wiley & Son.

    MATH  Google Scholar 

  • PaloDEx Group (Finland) (2007): Volumetric Tomography, [Online], Available at http://www.instrumentariumdental.com/

  • Ramesh, A., Ludlow, J. B., Webber, R. L., Tyndall, D. A., Paquette, D. (2002): Evaluation of tuned-aperture computed tomography in the detection of simulated periodontal defects. Oral and Maxillofacial Radiology 93: 341–349.

    Google Scholar 

  • Ranggayyan, R. M., Dhawan, A. T., Gordon, R. (1985): Algorithms for limited-view computed tomography: an annotated bibliography and a challenge. Appl. Opt. 24: 4000–4012.

    Google Scholar 

  • Raydan, M. (1997): The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7: 26–33.

    Article  MATH  MathSciNet  Google Scholar 

  • Sauer, K., James, S. Jr., Klifa, K. (1994): Bayesian estimation of 3-D objects from few radiographs. IEEE Trans. Nucl. Sci. 41: 1780–1790.

    Article  Google Scholar 

  • Siltanen, S., Kolehmainen, V., Järvenpää, S., Kaipio, J. P., Koistinen, P., Lassas, M., Pirttila, J., Somersalo, E. (2003): Statistical inversion for medical X-ray tomography with few radiographs I: General theory. Phys. Med. Biol. 48: 1437–1463.

    Article  Google Scholar 

  • Sterling, T., Savarese, D., Becker, D. J., Dorband, J. E., Ranawake, U. A., Packer, C. V. (1995): BEOWULF: A parallel workstation for scientific computation. In Proc. 24th Int. Conf. on Parallel Processing, number I.

  • Webber, R. L., Horton, R. A., Tyndall, D. A., Ludlow, J. B. (1997): Tuned aperture computed tomography (TACT). Theory and application for three-dimensional dento-alveolar imaging. Dentomaxillofacial Radiology 26: 53–62.

    Article  Google Scholar 

  • Webber, R. L., Messura, J. K. (1999): An in vivo comparison of diagnostic information obtained from tuned-aperture computed tomography and conventional dental radiographic imaging modalities. Oral Surgery Oral Medicine Oral Pathology 88: 239–247.

    Google Scholar 

  • Whaley, R. C., Petitet, A., Dongarra, J. J. (2001): Automated empirical optimization of software and the ATLAS project. Parallel Computing 27: 3–35.

    Article  MATH  Google Scholar 

  • Yu, D. F., Fessler, J. A. (2002): Edge-preserving tomographic reconstruction with nonlocal regularization. IEEE Trans. Med. Imag. 21: 159–173.

    Article  Google Scholar 

  • Zheng, J., Saquib, S. S., Sauer, K., Bouman, C. A. (2000): Parallelizable Bayesian tomography algorithms with rapid, quaranteed convergence. IEEE Trans. Image Processing 9: 1745–1759.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolehmainen, V., Vanne, A., Siltanen, S. et al. Bayesian inversion method for 3D dental X-ray imaging. Elektrotech. Inftech. 124, 248–253 (2007). https://doi.org/10.1007/s00502-007-0450-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-007-0450-7

Keywords

Schlüsselwörter

Navigation