[go: up one dir, main page]

Skip to main content
Log in

Testing statistical hypotheses for intuitionistic fuzzy data

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The present work is aimed to extend the classical statistical methods based on intuitionistic fuzzy data to hypothesis test about exact parameter of the underlying population. In this approach, the concepts of the intuitionistic fuzzy type-I error, intuitionistic fuzzy type-II error, intuitionistic fuzzy power and intuitionistic fuzzy p value are extended at a given significance level. A degree-based criterion is also suggested to compare the intuitionistic fuzzy p value and a specific significance level to make decision on whether accepting or rejecting the null hypothesis. An applied example is examined based on the proposed method in both parametric and nonparametric cases. The results indicate that the proposed method can be successfully applied for all parametric/nonparametric statistical hypotheses testing based on intuitionistic fuzzy continuous data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akbari MG, Rezaei A (2009b) Statistical inference about the variance of fuzzy random variables. \(\text{Sankhy}\bar{a}\) Ser B 71:206–221

  • Akbari MG, Rezaei AH (2009a) Order statistics using fuzzy random variables. Stat Prob Lett 79:1031–1037

    Article  MathSciNet  MATH  Google Scholar 

  • Akbari MG, Rezaei A (2010) Bootstrap testing fuzzy hypotheses and observations on fuzzy statistic. Exp Syst Appl 37:5782–5787

    Article  Google Scholar 

  • Arefi M, Taheri SM (2011) Testing fuzzy hypotheses using fuzzy data based on fuzzy test statistic. J Uncer Syst 5:45–61

    Google Scholar 

  • Arnold BF (1996) An approach to fuzzy hypothesis testing. Metrika 44:119–126

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold BF (1998) Testing fuzzy hypothesis with crisp data. Fuzzy Set Syst 9:323–333

    Article  MATH  Google Scholar 

  • Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Set Syst 20:87–96

    Article  MATH  Google Scholar 

  • Atanassov K (1994) New operations defined over the intuitionistic fuzzy sets. Fuzzy Set Syst 61:137–142

    Article  MathSciNet  MATH  Google Scholar 

  • Bertoluzza C, Gil MA, Ralescu DA (2002) Statistical modeling, analysis and management of fuzzy data. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  • Buckley JJ (2006) Fuzzy statistics; studies in fuzziness and soft computing. Springer, Berlin

    Google Scholar 

  • Chachi J (2017) Bootstrap approach to the one-sample and two-sample test of variances of a fuzzy random variable. Opt Inf Comput 5:188–199

    MathSciNet  Google Scholar 

  • Chachi J, Taheri SM (2011) Fuzzy confidence intervals for mean of Gaussian fuzzy random variables. Exp Syst Appl 38:5240–5244

    Article  Google Scholar 

  • Chen SM, Tan JM (1994) Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Set Syst 67:163–172

    Article  MathSciNet  MATH  Google Scholar 

  • De SK, Biswas R, Roy AR (2001) An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Set Syst 117:209–213

    Article  MATH  Google Scholar 

  • Denœux T, Masson MH, Herbert PH (2005) Non-parametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets Syst 153:1–28

    Article  MATH  Google Scholar 

  • Elsherif AK, Abbady FM, Abdelhamid GM (2009) An application of fuzzy hypotheses testing in radar detection. In: Proceedings of 13th international conference on aerospace science and aviation technology, ASAT-13, pp 1–9

  • Filzmoser P, Viertl R (2004) Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59:21–29

    Article  MathSciNet  MATH  Google Scholar 

  • Gajivaradhan P, Parthiban P (2015) Two sample statistical hypothesis test for trapezoidal fuzzy interval data. Int J Appl Math Stat Sci 4:11–24

    Google Scholar 

  • Geyer C, Meeden G (2005) Fuzzy and randomized confidence intervals and p values. Stat Sci 20:358–366

    Article  MathSciNet  MATH  Google Scholar 

  • Gibbons JD, Chakraborti S (2003) Non-parametric statistical inference, 4th edn. Marcel Dekker, New York

    MATH  Google Scholar 

  • Gil MA, Montenegro M, Rodríguez G, Colubi A, Casals MR (2006) Bootstrap approach to the multi-sample test of means with imprecise data. Comput Stat Data Anal 51:148–162

    Article  MathSciNet  MATH  Google Scholar 

  • Grzegorzewski P (2005) Two-sample median test for vague data. In: Proceedings of the 4th conference European society for fuzzy logic and technology-Eusflat, Barcelona, pp 621–626

  • Grzegorzewski P (2008) A bi-robust test for vague data. In: Magdalena L, Ojeda-Aciego M, Verdegay JL (Eds) Proceedings of the 12th international conference on information processing and management of uncertainty in knowledge-based systems, IPMU2008, Spain, Torremolinos (Malaga), June 22–27, pp 138–144

  • Grzegorzewski P (1998) Statistical inference about the median from vague data. Control Cybern 27:447–464

    MathSciNet  MATH  Google Scholar 

  • Grzegorzewski P (2000) Testing statistical hypotheses with vague data. Fuzzy Set Syst 11:501–510

    Article  MathSciNet  MATH  Google Scholar 

  • Grzegorzewski P (2004) Distribution-free tests for vague data. In: Lopez-Diaz M (ed) Soft methodology and random information systems. Springer, Heidelberg, pp 495–502

    Chapter  Google Scholar 

  • Grzegorzewski P (2009) K-sample median test for vague data. Int J Intell Syst 24:529–539

    Article  MATH  Google Scholar 

  • Hesamian G (2016) Bayesian fuzzy hypothesis testing with imprecise prior distribution. J Iran Stat Soc 15:105–119

    Article  MathSciNet  MATH  Google Scholar 

  • Hesamian G, Akbari MG (2017a) Semi-parametric partially logistic regression model with exact inputs and intuitionistic fuzzy outputs. Appl Soft Comput 58:517–526

    Article  Google Scholar 

  • Hesamian G, Akbari MG (2017b) Statistical test based on intuitionistic fuzzy hypotheses. Commun Stat Theory Methods 46:9324–9334

    Article  MathSciNet  MATH  Google Scholar 

  • Hesamian G, Chachi J (2015) Two-sample Kolmogorov–Smirnov fuzzy test for fuzzy random variables. Stat Pap 56:61–82

    Article  MathSciNet  MATH  Google Scholar 

  • Hesamian G, Taheri SM (2013) Fuzzy empirical distribution: properties and applications. Kybernetika 49:962–982

    MathSciNet  MATH  Google Scholar 

  • Hryniewicz O (2006a) Goodman–Kruskal measure of dependence for fuzzy ordered categorical data. Comput Stat Data Anal 51:323–334

    Article  MathSciNet  MATH  Google Scholar 

  • Hryniewicz O (2006b) Possibilistic decisions and fuzzy statistical tests. Fuzzy Set Syst 157:2665–2673

    Article  MathSciNet  MATH  Google Scholar 

  • Jiryaei A, Mashinchi M (2016) Linear hypothesis testing based on unbiased fuzzy estimators and fuzzy significance level. Fuzzy statistical decision-making. In: Kahraman C, Kabak O (eds) Studies in fuzziness and soft computing, vol 343, Springer, Cham

  • Kahraman C, Ozgur K (2016) Fuzzy statistical decision-making: theory and applications. Studies in fuzziness and soft computing. Springer, Cham

    Book  MATH  Google Scholar 

  • Kahraman C, Bozdag CF, Ruan D (2004) Fuzzy sets approaches to statistical parametric and non-parametric tests. Int J Intell Syst 19:1069–1078

    Article  MATH  Google Scholar 

  • Kruse R, Meyer KD (1987) Statistics with vague data. Riedel Publishing, New York

    Book  MATH  Google Scholar 

  • Lehmann EL, Romano JP (2005) Testing statistical hypotheses, 3rd edn. Springer, New York

    MATH  Google Scholar 

  • Lin P, Wu B, Watada J (2010) Kolmogorov–Smirnov two sample test with continuous fuzzy data. Adv Intell Soft Comput 68:175–186

    Article  MATH  Google Scholar 

  • Montenegro M, Casals MR, Lubiano MA, Gil MA (2001) Two-sample hypothesis tests of means of a fuzzy random variable. Inf Sci 133:89–100

    Article  MathSciNet  MATH  Google Scholar 

  • Montenegro M, Colubi A, Casals MR, Gil MA (2004) Asymptotic and Bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika 59:31–49

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen H, Wu B (2006) Fundamentals of statistics with fuzzy data. Springer, Netherlands

    Book  MATH  Google Scholar 

  • Pandian P, Kalpanapriya D (2014) Tests of statistical hypotheses with respect to a fuzzy set. Mod Appl Sci 8:25–35

    Google Scholar 

  • Parchami A, Taheri SM, Mashinchi M (2010) Fuzzy p value in testing fuzzy hypotheses with crisp data. Stat Pap 51:209–226

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez G, Montenegro M, Colubi A, Gil MA (2006) Bootstrap techniques and fuzzy random variables: synergy in hypothesis testing with fuzzy data. Fuzzy Set Syst 157:2608–2613

    Article  MathSciNet  MATH  Google Scholar 

  • Shao J (2003) Mathematical statistics. Springer, New York

    Book  MATH  Google Scholar 

  • Szmidt E, Kacprzyk J (2002) Using intuitionistic fuzzy sets in group decision making. Control Cybern 31:1037–1053

    MATH  Google Scholar 

  • Taheri SM, Arefi M (2009) Testing fuzzy hypotheses based on fuzzy test statistic. Soft Comput 13:617–625

    Article  MATH  Google Scholar 

  • Taheri SM, Behboodian J (1999) Neyman–Pearson lemma for fuzzy hypothesis testing. Metrika 49:3–17

    Article  MathSciNet  MATH  Google Scholar 

  • Taheri SM, Behboodian J (2001) A Bayesian approach to fuzzy hypotheses testing. Fuzzy Set Syst 123:39–48

    Article  MathSciNet  MATH  Google Scholar 

  • Taheri SM, Hesamian G (2011) Goodman–Kruskal measure of association for fuzzy-categorized variables. Kybernetika 47:110–122

    MathSciNet  MATH  Google Scholar 

  • Taheri SM, Hesamian G (2012) A generalization of the Wilcoxon signed-rank test and its applications. Stat Pap 54:457–470

    Article  MathSciNet  MATH  Google Scholar 

  • Taheri SM, Hesamian G (2017) Non-parametric statistical tests for fuzzy observations: fuzzy test statistic approach. Int J Fuzzy Logic Intell Syst 17:145–153

    Article  Google Scholar 

  • Torabi H, Behboodian J, Taheri SM (2006) Neyman–Pearson lemma for fuzzy hypothesis testing with vague data. Metrika 64:289–304

    Article  MathSciNet  MATH  Google Scholar 

  • Viertl R (2006) Univariate statistical analysis with fuzzy data. Compu Stat Data Anal 51:133–147

    Article  MathSciNet  MATH  Google Scholar 

  • Viertl R (2011) Statistical methods for fuzzy data. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Wang JQ, Nie R, Zhang HY, Chen XH (2013) New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Inf Sci 251:79–95

    Article  MathSciNet  MATH  Google Scholar 

  • Wu HC (2005) Statistical hypotheses testing for fuzzy data. Inf Sci 175:30–57

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  • Zainali AZ, Akbari MG, Noughabi A (2014) Intuitionistic fuzzy random variable and testing hypothesis about its variance. Soft Comput 19:2681–2689

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous reviewer for her/his constructive suggestions and comments, which improved the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghasem Akbari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, M.G., Hesamian, G. Testing statistical hypotheses for intuitionistic fuzzy data. Soft Comput 23, 10385–10392 (2019). https://doi.org/10.1007/s00500-018-3590-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3590-2

Keywords

Navigation