[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Optimization in dynamic environments: a survey on problems, methods and measures

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper provides a survey of the research done on optimization in dynamic environments over the past decade. We show an analysis of the most commonly used problems, methods and measures together with the newer approaches and trends, as well as their interrelations and common ideas. The survey is supported by a public web repository, located at http://www.dynamic-optimization.org where the collected bibliography is manually organized and tagged according to different categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://www.aifb.uni-karlsruhe.de/~jbr/EvoDOP.

References

  • Abbass HA, Sastry K, Goldberg DE (2004) Oiling the wheels of change: the role of adaptive automatic problem decomposition in non-stationary environments. IlliGAL report no. 2004029. Technical report, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory (IlliGAL)

  • Angeline PJ (1997) Tracking extrema in dynamic environments. In: Evolutionary programming VI. Lecture notes in computer science, vol 1213. Springer, Berlin, pp 335–345

  • Arnold DV, Beyer H-G (2002) Random dynamics optimum tracking with evolution strategies. In: Parallel problem solving from nature VII. Springer, Berlin, pp 3–12

  • Arnold DV, Beyer H-G (2006) Optimum tracking with evolution strategies. Evol Comput 14(3):291–308

    Article  Google Scholar 

  • Aydin ME, Öztemel E (2000) Dynamic job-shop scheduling using reinforcement learning agents. Robot Auton Syst 33(2–3):169–178

    Article  Google Scholar 

  • Ayvaz D, Topcuoglu H, Gurgen F (2006) A comparative study of evolutionary optimisation techniques in dynamic environments. In: Proceedings of the genetic and evolutionary computation conference. ACM, New York, pp 1397–1398

  • Barrico C, Antunes C (2007) An evolutionary approach for assessing the degree of robustness of solutions to multi-objective models. In: Studies in computational intelligence, vol 51. Springer, New York, pp 565–582

  • Blackwell TM (2003) Swarms in dynamic environments. In: Proceedings of the genetic and evolutionary computation conference. Lecture notes in computer science, vol 2723. Springer, Berlin, pp 1–12

  • Blackwell TM (2005) Particle swarms and population diversity. Soft Comput: A Fusion Found Methodol Appl 9(11):793–802

    MATH  Google Scholar 

  • Blackwell T (2007) Particle swarm optimization in dynamic environments. In: Studies in computational intelligence, vol 51. Springer, New York, pp 29–49

  • Blackwell T, Branke J (2004) Multi-swarm optimization in dynamic environments. In: Applications of evolutionary computing. Lecture notes in computer science, vol 3005. Springer, Berlin, pp 489–500

  • Blackwell T, Branke J (2006) Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans Evol Comput 10(4):459–472

    Article  Google Scholar 

  • Bosman PAN (2005) Learning, anticipation and time-deception in evolutionary online dynamic optimization. In: Proceedings of the 2005 workshops of the genetic and evolutionary computation conference. ACM, New York, pp 39–47

  • Bosman P (2007) Learning and anticipation in online dynamic optimization. In: Studies in computational intelligence, vol 51. Springer, New York, pp 129–152

  • Boumaza A (2005) Learning environment dynamics from self-adaptation: a preliminary investigation. In: Proceedings of the 2005 workshops of the genetic and evolutionary computation conference. ACM, New York, pp 48–54

  • Branke J (1999) Memory enhanced evolutionary algorithms for changing optimization problems. In: Angeline PJ, Michalewicz Z, Schoenauer M, Yao X, Zalzala A (eds) Proceedings of the IEEE Congress on evolutionary computation, vol 3. IEEE Press, pp 1875–1882

  • Branke J (2001) Evolutionary optimization in dynamic environments. In: Genetic algorithms and evolutionary computation, vol 3. Kluwer Academic Publishers, Dordrecht

  • Branke J (2005) Editorial: special issue on dynamic optimization problems. Soft Comput: A Fusion Found Methodol Appl 9(11):777

    Google Scholar 

  • Branke J, Jin Y (2006a) Guest editorial special issue on evolutionary computation in the presence of uncertainty. IEEE Trans Evol Comput 10(4):377–379

    Article  Google Scholar 

  • Branke J, Schmeck H (2003) Designing evolutionary algorithms for dynamic optimization problems. In: Advances in evolutionary computing: theory and applications, pp 239–262

  • Branke J, Kaubler T, Schmidt C, Schmeck H (2000) A multi-population approach to dynamic optimization problems. In: Adaptive computing in design and manufacture, pp 299–308

  • Branke J, Orbayi M, Uyar S (2006) The role of representations in dynamic knapsack problems. In: Applications of evolutionary computing. Lecture notes in computer science, vol 3907. Springer, Berlin, pp 764–775

  • Bui L, Abbass H, Branke J (2005a) Multiobjective optimization for dynamic environments. In: Proceedings of the IEEE Congress on evolutionary computation, vol 3, pp 2349–2356

  • Bui LT, Branke J, Abbass HA (2005b) Diversity as a selection pressure in dynamic environments. In: Proceedings of the genetic and evolutionary computation conference. ACM, New York, pp 1557–1558

  • Carlisle A, Dozier G (2000) Adapting particle swarm optimization to dynamic environments. In: Proceedings of the international conference on artificial intelligence (ICAI), pp 429–434

  • Cobb HG (1990) An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuouis, time-dependent nonstationary environments. Technical report AIC-90-001, Naval Research Laboratory

  • Dam H, Lokan C, Abbass H (2007) Evolutionary online data mining: an investigation in a dynamic environment. In: Studies in computational intelligence, vol 51. Springer, New York, pp 153–178

  • Dasgupta D, Mcgregor DR (1992) Nonstationary Function Optimization Using the Structured Genetic Algorithm. In R. Manner and B. Manderick, editors, Parallel Problem Solving from Nature. Elsevier, pp 145–154

  • Deb K, Nain P (2007) An evolutionary multi-objective adaptive meta-modeling procedure using artificial neural networks. In: Studies in computational intelligence, vol 51. Springer, New York, pp 297–322

  • Droste S (2003) Analysis of the (1+1) EA for a dynamically bitwise changing OneMax. In: Cantu-Paz E (ed) Lecture notes in computer science, vol 2723. Springer, New York, pp 909–921

  • Du W, Li B (2008) Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf Sci 178(15):3096–3109

    Article  Google Scholar 

  • Eberhart R, Shi Y (2001) Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the IEEE Congress on evolutionary computation, vol 1, pp 94–100

  • Elshamli A, Abdullah H, Areibi S (2004) Genetic algorithm for dynamic path planning. In: Canadian conference on electrical and computer engineering

  • Eriksson R, Olsson B (2002) On the behavior of evolutionary global-local hybrids with dynamic fitness functions. In: Parallel problem solving from nature VII. Springer, New York

  • Eriksson R, Olsson B (2004) On the performance of evolutionary algorithms with life-time adaptation in dynamic fitness landscapes. In: Proceedings of the IEEE Congress on evolutionary computation, vol 2, pp 1293–1300

  • Esquivel S, Coello Coello C (2004) Particle swarm optimization in non-stationary environments. In: Advances in artificial intelligence—IBERAMIA 2004. Springer, New York

  • Esquivel SC, Coello Coello CA (2006) Hybrid particle swarm optimizer for a class of dynamic fitness landscape. Eng Optim 38:873–888

    Article  MathSciNet  Google Scholar 

  • Fan Z, Wang J, Wen M, Goodman E, Rosenberg R (2007) An evolutionary approach for robust layout synthesis of MEMS. In: Studies in computational intelligence, vol 51. Springer, New York, pp 519–542

  • Fernandes CM, Rosa AC, Ramos V (2007) Binary ant algorithm. In: Proceedings of the genetic and evolutionary computation conference. ACM, New York, pp 41–48

  • Fernandes CM, Lima C, Rosa AC (2008) UMDAs for dynamic optimization problems. In: Proceedings of the genetic and evolutionary computation conference. ACM, New York, pp 399–406

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

  • García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15:617–644

    Article  MATH  Google Scholar 

  • Ghosh A, Mühlenbein H (2004) Univariate marginal distribution algorithms for non-stationary optimization problems. Int J Knowl Intell Eng Syst 8:129–138

    Google Scholar 

  • Goh C, Tan K (2007) Evolving the tradeoffs between pareto-optimality and robustness in multi-objective evolutionary algorithms. Studies in computational intelligence, vol 51. Springer, New York, pp 457–478

  • Goldberg DE, Smith RE (1987) Nonstationary function optimization using genetic algorithm with dominance and diploidy. In: Grefensette JJ (ed) Proceedings of the second international conference on genetic algorithms and their application. Lawrence Erlbaum Associates Inc., pp 59–68

  • Golden B, Stewart W (1985) Empirical evaluation of heuristics. In: Lawler E, Lenstra J, Kan AR, Shmoys D (eds) The traveling salesman problem: a guided tour of combinatorial optimization. Wiley, New York

  • González JR, Masegosa AD, García IJ (2010) A cooperative strategy for solving dynamic optimization problems. Memet Comput (in press). doi:10.1007/s12293-010-0031-x

  • Grefenstette JJ (1992) Genetic algorithms for changing environments. In: Männer R, Manderick B (eds) Proceedings of 2nd international conference on parallel problem solving from nature. Elsevier, pp 137–144

  • Guntsch M, Middendorf M, Schmeck H (2001) An ant colony optimization approach to dynamic TSP. In: Spector L et al (eds) Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, Massachusetts, pp 860–867

  • Handa H, Chapman L, Yao X (2007) Robust salting route optimization using evolutionary algorithms. In: Studies in computational intelligence, vol 51. Springer, New York, pp 497–517

  • Hanshar FT, Ombuki-Berman BM (2007) Dynamic vehicle routing using genetic algorithms. Appl Intell 27(1):89–99

    Article  MATH  Google Scholar 

  • Hart E, Ross P (1999) An immune system approach to scheduling in changing environments. In: Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, Massachusetts, pp 1559–1565

  • Hooker JN (1995) Testing heuristics: we have it all wrong. J Heuristics 1(1):33–42

    Article  MathSciNet  MATH  Google Scholar 

  • Hu X, Eberhart RC (2002) Adaptive particle swarm optimization: detection and response to dynamic systems. In: Proceedings of the IEEE Congress on evolutionary computation, vol 2, pp 1666–1670

  • Hu J, Li S, Goodman E (2007) Evolutionary robust design of analog filters using genetic programming. Studies in computational intelligence, vol 51. Springer, New York, pp 479–496

  • Janson S, Middendorf M (2004) A hierarchical particle swarm optimizer for dynamic optimization problems. In: Applications of evolutionary computing. Lecture notes in computer science, vol 3005. Springer, Berlin, pp 513–524

  • Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments: a survey. IEEE Trans Evol Comput 9(3):303–317

    Article  Google Scholar 

  • Jin Y, Sendhoff B (2004) Constructing dynamic optimization test problems using the multi-objective optimization concept. In: Raidl G.R. (ed) Lecture notes in computer science, vol 3005. Springer, New York, pp 525–536

  • Karaman A, Uyar S, Eryigit G (2005) The memory indexing evolutionary algorithm for dynamic environments. In: Applications on evolutionary computing. Lecture notes in computer science, vol 3449. Springer, Berlin, pp 563–573

  • Kobliha M, Schwarz J, Oenáek J (2006) Bayesian optimization algorithms for dynamic problems. In: Applications of evolutionary computing. Lecture notes in computer science, vol 3907. Springer, Berlin, pp 800–804

  • Kramer G, Gallagher J (2003) Improvements to the *CGA enabling online intrinsic evolution in compact EH devices. In: Proceedings of the NASA/DoD conference on evolvable hardware, pp 225–231

  • Laredo JL, Castillo PA, Mora AM, Merelo JJ, Rosa A, Fernandes C (2008) Evolvable agents in static and dynamic optimization problems. In: Proceedings of the 10th international conference on parallel problem solving from nature. Springer, New York, pp 488–497

  • Li C, Yang S (2008a) A generalized approach to construct benchmark problems for dynamic optimization. In: Simulated evolution and learning. Lecture notes in computer science, vol 5361. Springer, Berlin, pp 391–400

  • Li C, Yang S (2008b) Fast multi-swarm optimization for dynamic optimization problems. In: Fourth international conference on natural computation, vol 7. IEEE Computer Society, pp 624–628

  • Li X (2004) Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Proceedings of the genetic and evolutionary computation conference. Lecture notes in computer science, vol 3102. Springer, Berlin, pp 105–116

  • Li X, Branke J, Blackwell T. (2006) Particle swarm with speciation and adaptation in a dynamic environment. In: Proceedings of the genetic and evolutionary computation conference, vol 1. ACM, New York, pp 51–58

  • Lim D, Ong Y-S, Lim M-H, Jin Y (2007) Single/multi-objective inverse robust evolutionary design methodology in the presence of uncertainty. In: Studies in computational intelligence, vol 51. Springer, New York, pp 437–456

  • Ling Q, Wu G, Wang Q (2007) Deterministic robust optimal design based on standard crowding genetic algorithm. In: Studies in computational intelligence, vol 51. Springer, New York, pp 583–598

  • Lung RI, Dumitrescu D (2007) A new collaborative evolutionary-swarm optimization technique. In: Proceedings of the genetic and evolutionary computation conference. ACM, New York, pp 2817–2820

  • Lung RI, Dumitrescu D (2009) Evolutionary swarm cooperative optimization in dynamic environments. Nat Comput 9(1):83–94

    Article  MathSciNet  Google Scholar 

  • Mack Y, Goel T, Shyy W, Haftka R (2007) Surrogate model-based optimization framework: a case study in aerospace design. In: Studies in computational intelligence, vol 51. Springer, New York, pp 323–342

  • Mattfeld DC, Bierwirth C (2004) An efficient genetic algorithm for job shop scheduling with tardiness objectives. Eur J Oper Res 155(3):616–630

    Article  MathSciNet  MATH  Google Scholar 

  • Mendes R, Mohais A (2005) DynDE: a differential evolution for dynamic optimization problems. In: Proceedings of the IEEE Congress on evolutionary computation, vol 3, pp 2808–2815

  • Meyer KD, Nasuto SJ, Bishop M (2006) Stochastic diffusion search: partial function evaluation in swarm intelligence dynamic optimisation. In: Stigmergic optimization. Studies in computational intelligence, vol 31. Springer, Berlin, pp 185–207

  • Michalewicz Z, Schmidt M, Michalewicz M, Chiriac C (2007) Adaptive business intelligence: three case studies. In: Studies in computational intelligence, vol 51. Springer, New York, pp 179–196

  • Montemanni R, Gambardella L, Rizzoli A, Donati A (2003) A new algorithm for a dynamic vehicle routing problem based on ant colony system. In: Second international workshop on freight transportation and logistics, pp 27–30

  • Mori N, Kita H (2000a) Genetic algorithms for adaptation to dynamic environments: a survey. In: IEEE industrial electronics conference, IECON, vol 4, pp 2947–2952

  • Mori N, Kude T, Matsumoto K (2000b) Adaptation to a dynamical environment by means of the environment identifying genetic algorithm. In: IEEE industrial electronics conference, IECON 2000

  • Morrison RW (2003) Performance measurement in dynamic environments. In: GECCO Proceedings of workshop on evolutionary algorithms for dynamic optimization problems, pp 5–8

  • Morrison RW (2004) Designing evolutionary algorithms for dynamic environments. Springer, New York

  • Morrison R, De Jong K (1999) A test problem generator for non-stationary environments. In: Proceedings of the IEEE Congress on evolutionary computation, vol 3, pp 2047–2053

  • Moser I, Hendtlass T (2007) A simple and efficient multi-component algorithm for solving dynamic function optimisation problems. In: Proceedings of the IEEE Congress on evolutionary computation, pp 252–259

  • Neri F, Mäkinen R (2007) Hierarchical evolutionary algorithms and noise compensation via adaptation. In: Studies in computational intelligence, vol 51. Springer, New York, pp 345–369

  • Novoa P, Pelta DA, Cruz C, del Amo IG (2009) Controlling particle trajectories in a multi-swarm approach for dynamic optimization problems. In: International work-conference on the interplay between natural and artificial computation, IWINAC 2009. Lecture notes in computer science, vol 5601. Springer, Berlin, pp 285–294

  • Olivetti de França F, Von Zuben FJ, Nunes de Castro L (2005) An artificial immune network for multimodal function optimization on dynamic environments. In: Proceedings of the genetic and evolutionary computation conference. ACM, New York, pp 289–296

  • Pankratz G (2005) Dynamic vehicle routing by means of a genetic algorithm. Int J Phys Distrib Logist Manag 35(5):362–383

    Article  Google Scholar 

  • Parrott D, Li X (2004) A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In: Proceedings of the IEEE Congress on evolutionary computation, vol 1, pp 98–103

  • Pelta D, Cruz C, Gonzalez JR (2009a) A study on diversity and cooperation in a multiagent strategy for dynamic optimization problems. Int J Intell Syst 24:844–861

    Article  MATH  Google Scholar 

  • Pelta D, Cruz C, Verdegay JL (2009b) Simple control rules in a cooperative system for dynamic optimisation problems. Int J Gen Syst 38(7):701–717

    Article  MATH  Google Scholar 

  • Peng B, Reynolds R (2004) Cultural algorithms: knowledge learning in dynamic environments. In: Proceedings of the IEEE Congress on evolutionary computation, pp 1751–1758

  • Plexousakis D (2006) Beyond the horizon: anticipating future and emerging information society technologies. Technical report, European Research Consortium for Informatics and Mathematics. http://beyond-the-horizon.ics.forth.gr/

  • Quintão F, Nakamura F, Mateus G (2007) Evolutionary algorithms for combinatorial problems in the uncertain environment of the wireless sensor networks. In: Studies in computational intelligence, vol 51. Springer, New York, pp 197–222

  • Rand W, Riolo R (2005) Shaky ladders, hyperplane-defined functions and genetic algorithms: systematic controlled observation in dynamic environments. In: Applications on evolutionary computing. Lecture notes in computer science, vol 3449. Springer, Berlin, pp 600–609

  • Rand W, Riolo R (2006) The effect of building block construction on the behavior of the GA in dynamic environments: a case study using the shaky ladder hyperplane-defined functions. In: Applications of evolutionary computing. Lecture notes in computer science, vol 3907. Springer Berlin, pp 776–787

  • Rardin RL, Uzsoy R (2001) Experimental evaluation of heuristic optimization algorithms: a tutorial. J Heuristics 7(3):261–304

    Article  MATH  Google Scholar 

  • Reyes-Sierra M, Coello C (2007) A study of techniques to improve the efficiency of a multi-objective particle swarm optimizer. In: Studies in computational intelligence, vol 51. Springer, New York, pp 269–296

  • Richter H (2005) A study of dynamic severity in chaotic fitness landscapes. In: Proceedings of the IEEE Congress on evolutionary computation, vol 3, pp 2824–2831

  • Richter H, Yang S (2009) Learning behavior in abstract memory schemes for dynamic optimization problems. Soft Comput: A Fusion Found Methodol Appl 13(12):1163–1173

    MATH  Google Scholar 

  • Rocco C, Salazar D (2007) A hybrid approach based on evolutionary strategies and interval arithmetic to perform robust designs. In: Studies in computational intelligence, vol 51. Springer, New York, pp 543–564

  • Rohlfshagen P, Yao X (2009) The dynamic knapsack problem revisited: a new benchmark problem for dynamic combinatorial optimisation. In: Applications of evolutionary computing, pp 745–754

  • Rohlfshagen P, Lehre PK, Yao X (2009) Dynamic evolutionary optimisation: an analysis of frequency and magnitude of change. In: Proceedings of the genetic and evolutionary computation conference, pp 1713–1720

  • Ronnewinkel C, Martinetz T (2001) Explicit speciation with few a priori parameters for dynamic optimization problems. In: GECCO workshop on evolutionary algorithms for dynamic optimization problems. Morgan Kaufmann, Massachusetts, pp 31–34

  • Rossi C, Abderrahim M, César Díaz J (2008) Tracking moving optima using Kalman-based predictions. Evol Comput 16(1):1–30

    Article  Google Scholar 

  • Saleem S, Reynolds R (2000) Cultural algorithms in dynamic environments. In Proceedings of the Congress on evolutionary computation, vol 2, pp 1513–1520

  • Schönemann L (2004) The impact of population sizes and diversity on the adaptability of evolution strategies in dynamic environments. In: Proceedings of the IEEE Congress on evolutionary computation, vol 2, pp 1270–1277

  • Schönemann L (2007) Evolution strategies in dynamic environments. In: Studies in computational intelligence, vol 51. Springer, New York, pp 51–77

  • Sheskin DJ (2004) Handbook of parametric and nonparametric statistical procedures. CRC Press, Boca Raton

  • Shi Y, Eberhart R (2001) Fuzzy adaptive particle swarm optimization. In: Proceedings of the IEEE conference on evolutionary computation

  • Simões A, Costa E (2003) An immune system-based genetic algorithm to deal with dynamic environments: diversity and memory. In: Pearson DW, Steele NC, Albrecht R (eds) Proceedings of the sixth international conference on neural networks and genetic algorithms (ICANNGA03). Springer, New York, pp 168–174

  • Smierzchalski R, Michalewicz Z (2000) Modeling of ship trajectory in collision situations by an evolutionary algorithms. IEEE Trans Evol Comput 4:227–241

    Article  Google Scholar 

  • Stanhope S, Daida J (1999) (1+1) Genetic algorithm fitness dynamics in a changing environment. In Proceedings of the IEEE Congress on evolutionary computation, vol 3, pp 1851–1858

  • Tenne Y, Armfield S (2007) A memetic algorithm using a trust-region derivative-free optimization with quadratic modelling for optimization of expensive and noisy black-box functions. In: Studies in computational intelligence, vol 51. Springer, New York, pp 389–415

  • Tezuka M, Munetomo M, Akama K (2007) Genetic algorithm to optimize fitness function with sampling error and its application to financial optimization problem. In: Studies in computational intelligence, vol 51. Springer, New York, pp 417–434

  • Tinós R, Yang S (2007a) Genetic algorithms with self-organizing behaviour in dynamic environments. In: Studies in computational intelligence, vol 51. Springer, New York, pp 105–127

  • Tinós R, Yang S (2007b) A self-organizing random immigrants genetic algorithm for dynamic optimization problems. Genet Program Evolvable Mach 8(3):255–286

    Article  Google Scholar 

  • Tinós R, Yang S (2007c) Continuous dynamic problem generators for evolutionary algorithms. In: Proceedings of the IEEE Congress on evolutionary computation, pp 236–243

  • Tinós R, Yang S (2008) Evolutionary programming with q-Gaussian mutation for dynamic optimization problems. In: Proceedings of the IEEE Congress on evolutionary computation, pp 1823–1830

  • Trojanowski K, Wierzchon ST (2009) Immune-based algorithms for dynamic optimization. Inf Sci 179(10):1495–1515

    Article  Google Scholar 

  • Tumer K, Agogino A (2007) Evolving multi rover systems in dynamic and noisy environments. In: Studies in computational intelligence, vol 51. Springer, New York, pp 371–387

  • Ursem RK (2000) Multinational GAs: multimodal optimization techniques in dynamic environments. In: Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, Massachusetts, pp 19–26

  • Ursem RK, Krink T, Jensen M, Michalewicz Z (2002) Analysis and modeling of control tasks in dynamic systems. IEEE Trans Evol Comput 6(4):378–389

    Article  Google Scholar 

  • Venayagamoorthy G (2004) Adaptive critics for dynamic particle swarm optimization. In: IEEE international symposium on intelligent control

  • Wang H, Wang D, Yang S (2009a) A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems. Soft Comput: A Fusion Found Methodol Appl 13(8-9):763–780

    Google Scholar 

  • Wang H, Yang S, Ip W, Wang D (2009b) Adaptive primal-dual genetic algorithms in dynamic environments. IEEE Trans Syst Man Cybernet B 39(6):1348–1361

    Article  Google Scholar 

  • Weicker K (2002) Performance measures for dynamic environments. In: Parallel problem solving from nature VII. Lecture notes in computer science, vol 2439. Springer, New York, pp 64–73

  • Weicker K (2003) Evolutionary algorithms and dynamic optimization problems. Der Andere Verlag

  • Weicker K, Weicker N (1999) On evolution strategy optimization in dynamic environments. In: Proceedings of the IEEE Congress on evolutionary computation, pp 2039–2046

  • Wineberg M, Oppacher F (2000) Enhancing the GA’s ability to cope with dynamic environments. In: Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, Massachusetts, pp 3–10

  • Woldesenbet YG, Yen GG (2009) Dynamic evolutionary algorithm with variable relocation. IEEE Trans Evol Comput 13(3):500–513

    Article  Google Scholar 

  • Yan X-S, Kang L-S, Cai Z-H, Li H (2004) An approach to dynamic traveling salesman problem. In: International conference on machine learning and cybernetics

  • Yang S (2003) Non-stationary problem optimization using the primal-dual genetic algorithm. In: Proceedings of the IEEE Congress on evolutionary computation, vol 3. IEEE Press, pp 2246–2253

  • Yang S (2005) Memory-based immigrants for genetic algorithms in dynamic environments. In: Proceedings of the genetic and evolutionary computation conference. ACM, New York, pp 1115–1122

  • Yang S (2006a) Associative memory scheme for genetic algorithms in dynamic environments. In: Applications of evolutionary computing. Lecture notes in computer science, vol 3907. Springer, Berlin, pp 788–799

  • Yang S (2006b) A comparative study of immune system based genetic algorithms in dynamic environments. In: Proceedings of the genetic and evolutionary computation conference. ACM, New York, pp 1377–1384

  • Yang S (2007) Explicit memory schemes for evolutionary algorithms in dynamic environments. In: Studies in computational intelligence, vol 51. Springer, New York, pp 3–28

  • Yang S (2008) Genetic algorithms with memory- and elitism-based immigrants in dynamic environments. Evol Comput 16(3):385–416

    Article  Google Scholar 

  • Yang S, Tinós R (2007) A hybrid immigrants scheme for genetic algorithms in dynamic environments. Int J Autom Comput 4(3):243–254

    Article  Google Scholar 

  • Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput: A Fusion Found Methodol Appl 9(11):815–834

    MATH  Google Scholar 

  • Yang S, Yao X (2008) Population-based incremental learning with associative memory for dynamic environments. IEEE Trans Evol Comput 12(5):542–561

    Article  Google Scholar 

  • Yang S, Ong Y-S, Jin Y (2006) Editorial to special issue on evolutionary computation in dynamic and uncertain environments. Genet Program Evolvable Mach 7(4):293–294

    Article  Google Scholar 

  • Yang S, Ong Y-S, Jin Y (eds) (2007) Evolutionary computation in dynamic and uncertain environments. In: Studies in computational intelligence, vol 51. Springer, Berlin

  • Yang S, Cheng H, Wang F (2010) Genetic algorithms with immigrants and memory schemes for dynamic shortest path routing problems in mobile ad hoc networks. IEEE Trans Syst Man Cybernet C: Appl Rev 40(99):52–63

    Article  Google Scholar 

  • Yen G, Yang F, Hickey T, Goldstein M (2001) Coordination of exploration and exploitation in a dynamic environment. In: International joint conference on neural networks. Institute of Electrical and Electronics Engineers

  • Zeng S, Shi H, Kang L, Ding L (2007) Orthogonal dynamic hill climbing algorithm: ODHC. In: Studies in computational intelligence, vol 51. Springer, New York, pp 79–104

  • Zou X, Wang M, Zhou A, Mckay B (2004) Evolutionary optimization based on chaotic sequence in dynamic environments. In: IEEE international conference on networking, sensing and control, pp 1364–1369

Download references

Acknowledgments

This work has been partially funded by projects TIN2008-01948 from the Spanish Ministry of Science and Innovation, and P07-TIC-02970 from the Andalusian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Pelta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, C., González, J.R. & Pelta, D.A. Optimization in dynamic environments: a survey on problems, methods and measures. Soft Comput 15, 1427–1448 (2011). https://doi.org/10.1007/s00500-010-0681-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-010-0681-0

Keywords