Abstract
We introduce a class of infinite graphic matroids that contains all the motivating examples and satisfies an extension of Tutte’s excluded minors characterisation of finite graphic matroids.We prove that its members can be represented by certain ‘graph-like’ topological spaces previously considered by Thomassen and Vella.
Similar content being viewed by others
References
S. H. A. Borujeni and N. Bowler: Thin sums matroids and duality, Advances in Mathematics 271 (2015), 1–29.
N. Bowler and J. Carmesin: An excluded minors method for infinite matroids, Preprint 2012, current version available at arxiv.org/pdf/1212.3939v1.
N. Bowler and J. Carmesin: An excluded minors method for infinite matroids, J. Combin. Theory Ser. B, to appear. Extended preprint version 2012: available at www.math.uni-hamburg.de/spag/dm/papers/excludedminors v5.pdf.
N. Bowler and J. Carmesin: Infinite trees of matroids, Preprint 2014, available at arxiv.org/abs/1409.6627.
N. Bowler, J. Carmesin and R. Christian: Infinite graphic matroids, Preprint 2013, current version available at arxiv.org/abs/1309.3735.
N. Bowler, J. Carmesin and L. Postle: Reconstruction of infinite matroids from their 3-connected minors, extended online edition, European J. Combin., to appear. Preprint 2016, current version available at arxiv.org/abs/1606.04235.
H. Bruhn and M. Stein: MacLane’s planarity criterion for locally finite graphs, J. Combin. Theory (Series B) 96 (2006), 225–239.
H. Bruhn and R. Diestel: Infinite matroids in graphs, Discrete Math. 311 (2011), 1461–1471.
H. Bruhn, R. Diestel, M. Kriesell, R. Pendavingh and P. Wollan: Axioms for infinite matroids, Adv. Math. 239 (2013), 18–46.
H. Bruhn and M. Stein: Duality of ends, Combin. Probab. Comput. 19 (2010), 47–60.
H. Bruhn and P. Wollan: Finite connectivity in infinite matroids, European Journal of Combinatorics 33 (2012), 1900–1912.
R. Christian: Infinite graphs, graph-like spaces and B-matroids, PhD thesis, University of Waterloo, 2010.
R. Christian, R. B. Richter and B. Rooney: The planarity theorems of MacLane and Whitney for graph-like continua, Electron. J. Combin. 17 (2010), research Paper 12.
R. Diestel: Locally finite graphs with ends: a topological approach, Hamburger Beitr. Math., 340, 2009, see /www.math.uni-hamburg.de/math/research/Preprints/hbm.html.
R. Diestel: Graph Theory (4th edition), Springer-Verlag, 2010.
D. A. Higgs: Infinite graphs and matroids, Recent Progress in Combinatorics, in: Proceedings Third Waterloo Conference on Combinatorics, Academic Press, 1969, 245–53.
J. Oxley: Matroid Theory, Oxford University Press, 1992.
M. Stein: Arboriticity and tree-packing in locally finite graphs, J. Combin. Theory (Series B) 96 (2006), 302–312.
C. Thomassen and A. Vella: Graph-like continua, augmenting arcs, and Menger’s theorem, Combinatorica 28 (2008), 595–623.
W. T. Tutte: Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527–552.
A. Vella: A fundamentally topological perspective on graph theory, PhD thesis, University of Waterloo, 2005.
A. Vella and R. B. Richter: Cycle spaces in topological spaces, J. Graph Theory 59 (2008), 115–144.
N. White: Unimodular matroids, in: Combinatorial geometries, volume 29 of Encyclopedia Math. Appl., 40–52, Cambridge Univ. Press, Cambridge, 1987.