[go: up one dir, main page]

Skip to main content

Advertisement

Log in

A comparison of bioclimatic potential in two global regions during the late twentieth century and early twenty-first century

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Changes in the general circulation of the atmosphere have been taking place during the latter part of the twentieth century and the early part of the twenty-first century. In the Belgorod region of Southwest Russia, this has been manifested in the more frequent occurrence of stationary anticyclones, including those referred to as blocking anticyclones, especially during the summer season. Also, there has been a general increase in regional temperatures during the growing season over the period mentioned above, and combined with the more frequent occurrence of anticyclones has led to less humid conditions. In the Missouri region of the Central USA, variability in the circulation on differing time scales within the Eastern Pacific plays a strong role in the conditions that impact the growing season. As a result of changes in climate and climate variability, the benefit to agriculture during this period produces mixed results for both regions. This work will evaluate the growing season conditions using indexes that combine growing season temperature and precipitation such as the hydrothermal coefficient (HTC) and the bioclimatic potential (BCP). Also, the interannual variability of these indexes in both regions was examined. In the Belgorod region, the increase in temperature combined with little change in precipitation produced mixed results in interpreting these indexes. This was accompanied by more variable conditions as revealed by these indexes in the early twenty-first century. In the Missouri region, there was little trend in either index over the time period and the tendency was toward less climatic variability in the HTC and BCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agayan GM, Mokhov II (1989) Quasistationary autumn regimes of the Northern Hemisphere atmosphere in FGGE. Izv Atmos Oc Phys 25:1150–1156

    Google Scholar 

  • Agroclimatic Resources of the Belgorod region, Leningrad (1972) Hydrometeorological service of the Central Chernozem regions, p. 92

  • Ahrens CD (2012) Meteorology today: an introduction to weather, climate, and the environment, Brooks-Cole, 10th edition

  • Ashabokov BM, Calow HM, Fedchenko LM, Stasenko DV (2012) Some problems and methods of agriculture adaptation to climate change. In the book: Regional effects of global climate change (causes, effects, predictions): proceedings of Intern. Scientific. conf. (Voronezh, 26–27 June 2012). Voronezh, Publishing house “Scientific book.” pp. 360–365

  • Birk K, Lupo AR, Guinan PE, Barbieri CE (2010) The interannual variability of Midwestern temperatures and precipitation as related to the ENSO and PDO. Atmósfera 23:95–128

    Google Scholar 

  • Changnon SA, Winstanley D (1999). Long-term variations in seasonal weather conditions and their impacts on crop production and water resources in Illinois. Research Report No. 127. Department of Natural Resources. Illinois Water Survey. pp. 37

  • Chen D, Chen HW (2013) Using the Koeppen classification to quantify climate variation and change. An example for 1901–2010. Environmental Development 6:69–79. https://doi.org/10.1016/j.envdev.2013.03.007

    Article  Google Scholar 

  • Dawson NW, Guinan PE, Lupo AR (2010) A long-term study of tropical systems impacting Missouri. Transactions of the Missouri Academy of Science 44:29–41

    Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149(1):7–13. https://doi.org/10.1104/pp.108.130195

    Article  CAS  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM (1999) Interannual-to-multidecadal climate variability and its relationship to global sea surface temperatures. In: Markgraf V (ed) Present and Past Inter-Hemispheric Climate Linkages in the Americas and their Societal Effects. Cambridge University Press, Cambridge

    Google Scholar 

  • Gershunov A, Barnett TP (1998) Interdecadal modulation of ENSO teleconnections. Bull Amer Meteor Soc 79(12):2715–2725. https://doi.org/10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2

    Article  Google Scholar 

  • Gordeev AV, Kleschenko AD, Chernyakov BA, Sirotenko OD (2006) Bioclimatic potential of Russia: theory and practice. Moscow: Partnership of scientific editions KMK.- p. 512

  • Gustokashina NN, Maksutova EV (2006) The tendencies of the climatic fridiy change in steppe and forest-steppe of the Baikal region. Geog Nat Res 4:76–81 [In Russian]

    Google Scholar 

  • Henson CB, Lupo AR, Market PS, Guinan PE (2017) The impact of ENSO and PDO-related climate variability on regional Missouri crop yields. Int J Biometeorol 61(5):857–867. https://doi.org/10.1007/s00484-016-1263-3

    Article  Google Scholar 

  • Hu Q, Buyanovsky G (2003) Climate effects on corn yield in Missouri. J Appl Meteorol 42(11):1626–1635. https://doi.org/10.1175/1520-0450(2003)042<1626:CEOCYI>2.0.CO;2

    Article  Google Scholar 

  • Hu Q, Woodruff CM, Mudrick SE (1998) Interdecadal variations of annual precipitation in the Central United States. Bull Amer Meteorol Soc 79(2):221–230. https://doi.org/10.1175/1520-0477(1998)079<0221:IVOAPI>2.0.CO;2

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), Climate change 2013: The Physical Scientific Basis, in Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change (IPCC), http://www.ipcc.ch.(2013)

  • Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc. 79(2):231–241. https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2

    Article  Google Scholar 

  • Khromov SP, Petrosyants MA (2006) Meteorologia i Klimatologia. Publication of Moscow State University, Moscow

    Google Scholar 

  • Klyashtorin LB, Lyubushin AA (2007) Cyclic climate changes and fish productivity. Science Export, Moscow, Russia pp. 230

  • Kolomeychenko BV (2007) Crop: A textbook for students. M: Agrobiznescentr.-552 p

  • Kononova NK (2009) Classification of the Northern Hemisphere circulation mechanisms by B. L. Dzerdzeevsky. edited by A. B. Shmakin, Russian Acad. Sciences. Institute of Geography. M.: Voentechinizdat 372 p

  • Lebedeva MG, Krymskaya OV, Lupo AR, Chendev YG, Petin AN, Solovyov AB (2016) Trends in summer season climate for Eastern Europe and southern Russia in the early 21st century. Adv Meteor, 2016, Article ID 5035086, pp. 10

  • Lebedeva MG, Solovyov AB, Tolstopyatova OS (2015) Agroclimatic zoning of the Belgorod region in the context of climate change. Scientific sheets of BelSU. No. 9 (206), 31: 160–167

  • Lebedeva MG, Krymskaya OV (2008) A manifestation of modern climate changes in the Belgorod region. Scientific sheets of BelSU. No. 3 (43):6: 188–196

  • Lobell DB, Burke MB (2010) On the use of statistical models to predict crop yield responses to climate change. Agric For Meteorol 150(11):1443–1452. https://doi.org/10.1016/j.agrformet.2010.07.008

    Article  Google Scholar 

  • Losev AP, Zhurina LL (2001) Agrometeorology. Kolos, Moscow 296 p

    Google Scholar 

  • Lupo AR, Kelsey EP, Weitlich DK, Davis NA, Market PS (2008) Using the monthly classification of global SSTs and 500 hPa height anomalies to predict temperature and precipitation regimes one to two seasons in advance for the mid-Mississippi region. Nat Wea Dig 32(1):11–33

    Google Scholar 

  • Lupo AR, Smith NB, Guinan PE, Chesser MD (2012a) The climatology of Missouri region dew points and the relationship to ENSO. Nat Wea Dig 36:81–91

    Google Scholar 

  • Lupo AR, Mokhov II, Akperov MG, Chernokulsky AV, Athar H (2012b) A dynamic analysis of the role of the planetary and synoptic scale in the summer of 2010 blocking episodes over the European part of Russia, Adv. Met, 2012: 11p, Article ID 584257

  • Lupo AR, Mokhov II, Chendev YG, Lebedeva MG, Akperov MG, Hubbart JA (2014) Studying summer season drought in western Russia. Advances in Meteorology, Special Issue: Large Scale Atmospheric Science, 2014: 9 p, Article ID 942027

  • Matveev SM, Chendev YG, Lupo AR, Hubbart JA, Timashuk DA (2016) Climatic changes in the East-European forest-steppe and their effects on scotch pine annual rings increment. Pure Appl Geophys 174(1):427–443. https://doi.org/10.1007/s00024-016-1420-y

    Article  Google Scholar 

  • Mokhov II, Khon VC, Timazhev AV, Chernokulsky AV, Semenov VA (2014) Hydrological anomalies and trends in the Amur River basin due to climate changes. In: Extreme Floods in the Amur River Basin: Causes, Forecasts, and Recommendations, Roshydromet, Earth Climate Theory Studies, 81–121

  • Mokhov II, Akperov AG, Prokofyeva MA, Timazhev AV, Lupo AR, Le Treut HR (2012) Blockings in the Northern Hemisphere and Euro-Atlantic region: estimates of changes from reanalyses data and model simulations. Doklady, 449, 430–433

  • Mokhov II (2011). The anomalous summer of 2010 within the general context of climate change and the anomalies. Analysis of the anomalous weather over Russia during the Summer of 2010, 41–47

  • Mokhov II, Chernokulsky AV, Shkolnik IM (2006) Regional model assessments of fire risks under global climate changes. Doklady Earth Sci 411(9):1485–1488

    Article  Google Scholar 

  • National Climate Assessment (NCA) (2014). The National Climate Assessment Summarizes the impacts of climate change on the United States, Now and in the Future 2014. Available online: http://nca2014.globalchange.gov/

  • Neter J, Wasserman W, Whitmore GA (1988) Applied statistics, 3rd edn. MA. Allyn and Bacon, Boston 1006 pp

    Google Scholar 

  • Newberry RG, Lupo AR, Jensen AD, Rodriges-Zalipynis RA (2016) An analysis of the spring-to-summer transition in the West Central Plains for application to long range forecasting. Atms Cli Sci 6:375–393

    Google Scholar 

  • Nunes MJ, Lupo AR, Lebedeva MG, Chendev YG, Solovyov AB (2017) The occurrence of extreme monthly temperatures and precipitation in two global regions. Papers Appl Geog 3(2):143–156. https://doi.org/10.1080/23754931.2017.1286253

    Article  Google Scholar 

  • Petin AN, Lebedeva MG, Krymskaya OV, Chendev YG, Kornilov AG, Lupo AR (2014) Regional manifestations of changes in atmospheric circulation in the central black earth region (by the example of Belgorod region). Adv Environ Bio 8(10):544–547

    Google Scholar 

  • Reddy VR, Panchepsky YA (2000) Predicting crop yields under climate change conditions from monthly GCM weather projections. Environmental Modeling and Software 15:79–86

    Article  Google Scholar 

  • Sapozhnikova SA (1970) To clarify of agricultural land capability climate assessment, agroclimatic resources of natural zones of the USSR and their use. L:Gidrometeoizdat, 80–92

  • Selyaninov GT (1928) On agricultural climate valuation. Proc. Agric. Meteor. 20:165–177 [In Russian]

    Google Scholar 

  • Shashko DI (1985) Agroclimatic Resources of the USSR. Leningrad: Gidrometeoroizdat. 248. Stock materials of the Federal service for Hydrometeorology and environmental monitoring for 1899–2014

  • Strashnaya AI, Maksimenkova TA, Chub OV (2011) Agrometeorological specifics of the 2010 drought in Russia in comparison with past droughts. Works of Russian Hydro-Meteorological Center 345:171–188 [In Russian]

    Google Scholar 

  • Tarankov VI (1991) Forest meteorology: textbook. Voronezh Pedagogical Institute Press, Voronezh (in Russian)

    Google Scholar 

  • Wiedenmann JM, Lupo AR, Mokhov II, Tikhonova EA (2002) The climatology of blocking anticyclones for the Northern and Southern Hemispheres: block intensity as a diagnostic. J Clim 15(23):3459–3473. https://doi.org/10.1175/1520-0442(2002)015<3459:TCOBAF>2.0.CO;2

    Article  Google Scholar 

  • Wuebbles D, Meehl G, Hayhoe K, Karl T, Kunkel K, Santer B, Wehner M, Colle B, Fischer EM, Fu R, Goodman A, Janssen E, Kharin V, Lee H, Li W, Long LN, Olsen SC, Pan Z, Seth A, Sheffield J, Sun L (2014) CMIP5 climate model analysis: climate extremes in the United States. Bull. Amer. Meteor. Soc. 95:571–583. https://doi.org/10.1175/BAMS-D-12-00172.1

    Article  Google Scholar 

  • Zolotokrylin AN, Titkova TB (1998) The dependence of the climate anomalies in the growing season forest on the Russian plains on large-scale atmospheric circulation. Izv. Geog 5:121–128

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Russian Science Foundation (RSF) grant No 14-17-00171; “Regional responses of environmental components on climate change varying periodicity: South forest-steppe of the Central Russian Upland”, for analysis of the data pertaining to the Belgorod region. We also thank the anonymous reviewers and editors for their suggestions, which improved this manuscript.

Funding

This work was supported by the Russian Science Foundation (RSF) grant No 14-17-00171 and was funded partially under the Missouri EPSCoR project supported by the National Science Foundation under Award Number IIA-1355406 for the central USA region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Lupo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, M.G., Lupo, A.R., Henson, C.B. et al. A comparison of bioclimatic potential in two global regions during the late twentieth century and early twenty-first century. Int J Biometeorol 62, 609–620 (2018). https://doi.org/10.1007/s00484-017-1470-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1470-6

Keywords

Navigation