Abstract
Although many studies have indicated the consistent impact of warming on the natural ecosystem (e.g., an early flowering and prolonged growing period), our knowledge of the impacts on agricultural systems is still poorly understood. In this study, spatiotemporal variability of the heading–flowering stages of single rice was detected and compared at three different scales using field-based methods (FBMs) and satellite-based methods (SBMs). The heading–flowering stages from 2000 to 2009 with a spatial resolution of 1 km were extracted from the SPOT/VGT NDVI time series data using the Savizky–Golay filtering method in the areas in China dominated by single rice of Northeast China (NE), the middle-lower Yangtze River Valley (YZ), the Sichuan Basin (SC), and the Yunnan-Guizhou Plateau (YG). We found that approximately 52.6 and 76.3 % of the estimated heading–flowering stages by a SBM were within ±5 and ±10 days estimation error (a root mean square error (RMSE) of 8.76 days) when compared with those determined by a FBM. Both the FBM data and the SBM data had indicated a similar spatial pattern, with the earliest annual average heading–flowering stages in SC, followed by YG, NE, and YZ, which were inconsistent with the patterns reported in natural ecosystems. Moreover, diverse temporal trends were also detected in the four regions due to different climate conditions and agronomic factors such as cultivar shifts. Nevertheless, there were no significant differences (p > 0.05) between the FBM and the SBM in both the regional average value of the phenological stages and the trends, implying the consistency and rationality of the SBM at three scales.









Similar content being viewed by others
References
Badeck F-W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162(2):295–309. doi:10.1111/j.1469-8137.2004.01059.x
Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci U S A 96(17):9701–9704. doi:10.1073/pnas.96.17.9701
Bradley BA, Jacob RW, Hermance JF, Mustard JF (2007) A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens Environ 106(2):137–145. doi:10.1016/j.rse.2006.08.002
Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens Environ 91(3–4):332–344. doi:10.1016/j.rse.2004.03.014
Chen X, Hu B, Yu R (2005) Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Glob Chang Biol 11(7):1118–1130. doi:10.1111/j.1365-2486.2005.00974.x
Chmielewski F-M, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121(1–2):69–78. doi:10.1016/S0168-1923(03)00161-8
Cong N, Piao S, Chen A, Wang X, Lin X, Chen S, Han S, Zhou G, Zhang X (2012) Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model analysis. Agric For Meteorol 165:104–113. doi:10.1016/j.agrformet.2012.06.009
Devries ME, Leffelaar PA, Sakane N, Bado BV, Giller KE (2011) Adaptability of irrigated rice to temperature change in Sahelian environments. Exp Agric 47(1):69–87. doi:10.1017/s0014479710001328
Dingkuhn M, Le Gal P-Y (1996) Effect of drainage date on yield and dry matter partitioning in irrigated rice. Field Crop Res 46(1–3):117–126. doi:10.1016/0378-4290(95)00094-1
Doi H, Takahashi M, Katano I (2010) Genetic diversity increases regional variation in phenological dates in response to climate change. Glob Chang Biol 16(1):373–379. doi:10.1111/j.1365-2486.2009.01993.x
Estrella N, Sparks TH, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Chang Biol 13(8):1737–1747. doi:10.1111/j.1365-2486.2007.01374.x
Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296(5573):1689–1691. doi:10.1126/science.1071617
Foerster S, Kaden K, Foerster M, Itzerott S (2012) Crop type mapping using spectral–temporal profiles and phenological information. Comput Electron Agric 89:30–40. doi:10.1016/j.compag.2012.07.015
García-Mozo H, Mestre A, Galán C (2010) Phenological trends in southern Spain: a response to climate change. Agric For Meteorol 150(4):575–580. doi:10.1016/j.agrformet.2010.01.023
Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7(11):1417–1434. doi:10.1080/01431168608948945
Howell D (2002) Statistical methods for psychology. Duxbury. p 324–325
Huang J, Wang X, Li X, Tian H, Pan Z (2013) Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR. PLoS ONE 8(8). doi:10.1371/journal.pone.0070816
Ibanez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Philos Trans R Soc B Biol Sci 365(1555):3247–3260. doi:10.1098/rstb.2010.0120
IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, and Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, USA
Jeganathan C, Dash J, Atkinson PM (2014) Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sens Environ 143:154–170. doi:10.1016/j.rse.2013.11.020
Jeong S-J, Ho C-H, Gim H-J, Brown ME (2011) Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob Chang Biol 17(7):2385–2399. doi:10.1111/j.1365-2486.2011.02397.x
Jonsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens 40(8):1824–1832. doi:10.1109/TGRS.2002.802519
Jonsson P, Eklundh L (2004) TIMESAT—a program for analyzing time-series of satellite sensor data. Comput Geosci 30(8):833–845. doi:10.1016/j.cageo.2004.05.006
Karlsen S, Hogda K, Wielgolaski F, Tolvanen A, Tommervik H, Poikolainen J, Kubin E (2009) Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data. Clim Res 39(3):275–286. doi:10.3354/cr00828
Kross A, Fernandes R, Seaquist J, Beaubien E (2011) The effect of the temporal resolution of NDVI data on season onset dates and trends across Canadian broadleaf forests. Remote Sens Environ 115(6):1564–1575. doi:10.1016/j.rse.2011.02.015
Li Z, Tang H, Yang P, Wu W, Chen Z, Zhou Q, Zhang L, Zou J (2012) Spatio-temporal responses of cropland phenophases to climate change in Northeast China. J Geogr Sci 22(1):29–45. doi:10.1007/s11442-012-0909-2
Li Z, Yang P, Tang H, Wu W, Yin H, Liu Z, Zhang L (2014) Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg Environ Chang 14(1):39–48. doi:10.1007/s10113-013-0503-x
Liu Y, Wang E, Yang X, Wang J (2010) Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Glob Chang Biol 16(8):2287–2299. doi:10.1111/j.1365-2486.2009.02077.x
Liu L, Wang E, Zhu Y, Tang L (2012) Contrasting effects of warming and autonomous breeding on single-rice productivity in China. Agric Ecosyst Environ 149:20–29. doi:10.1016/j.agee.2011.12.008
Lobell DB, Sibley A, Ivan Ortiz-Monasterio J (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2(3):186–189. doi:10.1038/nclimate1356
Lu P, Yu Q, Liu H, He Q (2006) Effects of changes in spring temperature on flowering dates of woody plants across China. Bot Stud 47(2):153–161
McCloy KR, Lucht W (2004) Comparative evaluation of seasonal patterns in long time series of satellite image data and simulations of a global vegetation model. IEEE Trans Geosci Remote Sens 42(1):140–153. doi:10.1109/tgrs.2003.817811
Mei F, Wu X, Yao C et al (1988) Rice cropping regionalization in China. Chin J Rice Sci 2(3):97–110 (in Chinese with English abstract)
Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Chang Biol 7(6):657–666. doi:10.1111/j.1365-2486.2001.00430.x
Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-KÜBler K, Bissolli P, BraslavskÁ OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, MÅGe F, Mestre A, Nordli Ø, PeÑUelas J, Pirinen P, RemiŠOvÁ V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Global Change Biology 12(10):1969–1976. doi:10.1111/j.1365-2486.2006.01193.x
Moldenhauer K, Slaton N (2001) Rice growth and development. In: Slaton NA (ed) Rice production handbook. Misc. Publ. 192. Coop. Ext. Serv., Univ. of Arkansas, Little Rock, pp 7–14
Morin X, Roy J, Sonié L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186(4):900–910. doi:10.1111/j.1469-8137.2010.03252.x
Papademetrieu MK (ed.) (2000) Bridging the rice yield gap in the Asia-Pacific Region. FAO RAP Publication, p 219
Piao S, Fang J, Zhou L, Ciais P, Zhu B (2006) Variations in satellite-derived phenology in China's temperate vegetation. Glob Chang Biol 12(4):672–685. doi:10.1111/j.1365-2486.2006.01123.x
Romanovskaja D, Kalvane G, Briede A, Baksiene E (2009) The influence of climate warming on the changes of the length of phenological seasons in Lithuania and Latvia. Zemdirbyste-Agriculture 96(4):218–231
Sacks WJ, Kucharik CJ (2011) Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agric For Meteorol 151(7):882–894. doi:10.1016/j.agrformet.2011.02.010
Sakamoto T, Wardlow BD, Gitelson AA, Verma SB, Suyker AE, Arkebauer TJ (2010) A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sens Environ 114(10):2146–2159. doi:10.1016/j.rse.2010.04.019
Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639. doi:10.1021/ac60214a047
Sehgal VK, Jain S, Aggarwal PK, Jha S (2011) Deriving crop phenology metrics and their trends using times series NOAA-AVHRR NDVI Data. J Indian Soc Remote Sens 39(3):373–381. doi:10.1007/s12524-011-0125-z
Setiyono TD, Weiss A, Specht J, Bastidas AM, Cassman KG, Dobermann A (2007) Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions. Field Crop Res 100(2–3):257–271. doi:10.1016/j.fcr.2006.07.011
Sheather SJ (2004) Density estimation. Stat Sci 19(4):588–597. doi:10.1214/088342304000000297
Siebert S, Ewert F (2012) Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric For Meteorol 152:44–57. doi:10.1016/j.agrformet.2011.08.007
Sparks TH, Carey PD (1995) The Responses of Species to Climate Over Two Centuries: An Analysis of the Marsham Phenological Record, 1736–1947. J Ecol 83(2):321–329. doi:10.2307/2261570
Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44(2):82–87. doi:10.1007/s004840000049
Sun W, Huang Y (2011) Global warming over the period 1961–2008 did not increase high-temperature stress but did reduce low-temperature stress in irrigated rice across China. Agric For Meteorol 151(9):1193–1201. doi:10.1016/j.agrformet.2011.04.009
Sun H, Huang J, Peng D (2009) Detecting major growth stages of paddy rice using MODIS data. J Remote Sens 13(6):1122–1137
Tao F, Zhang S, Zhang Z (2012) Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. Eur J Agron 43:201–212. doi:10.1016/j.eja.2012.07.005
Tao F, Zhang Z, Shi W, Liu Y, Xiao D, Zhang S, Zhu Z, Wang M, Liu F (2013) Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite. Glob Chang Biol 19(10):3200–3209. doi:10.1111/gcb.12250
Thornton PK, Jones PG, Alagarswamy G, Andresen J (2009) Spatial variation of crop yield response to climate change in East Africa. Glob Environ Chang 19(1):54–65. doi:10.1016/j.gloenvcha.2008.08.005
Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci U S A 104(50):19686–19690. doi:10.1073/pnas.0701728104
Vitasse Y, François C, Delpierre N, Dufrêne E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151(7):969–980. doi:10.1016/j.agrformet.2011.03.003
Wang X, Piao S, Ciais P, Li J, Friedlingstein P, Koven C, Chen A (2011) Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc Natl Acad Sci U S A 108(4):1240–1245. doi:10.1073/pnas.1014425108
Wang H, Chen J, Wu Z, Lin H (2012) Rice heading date retrieval based on multi-temporal MODIS data and polynomial fitting. Int J Remote Sens 33(6):1905–1916. doi:10.1080/01431161.2011.603378
Wu W, Yang P, Tang H, Zhou Q, Chen Z, Shibasaki R (2010) Characterizing spatial patterns of phenology in cropland of China based on remotely sensed data. Agric Sci China 9(1):101–112. doi:10.1016/s1671-2927(09)60073-0
Yao F, Xu Y, Lin E, Yokozawa M, Zhang J (2007) Assessing the impacts of climate change on rice yields in the main rice areas of China. Clim Chang 80(3–4):395–409. doi:10.1007/s10584-006-9122-6
Zhang S, Tao F (2013) Modeling the response of rice phenology to climate change and variability in different climatic zones: comparisons of five models. Eur J Agron 45:165–176. doi:10.1016/j.eja.2012.10.005
Zhang T, Huang Y, Yang X (2013) Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob Chang Biol 19(2):563–570. doi:10.1111/gcb.12057
Zhang S, Tao F, Zhang Z (2014) Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981–2009. Eur J Agron 54:70–83. doi:10.1016/j.eja.2013.12.001
Acknowledgments
This study was funded by the Fund for Creative Research Groups of National Natural Science Foundation of China (no. 41321001), the State Key Laboratory of Earth Surface Processes and Resource Ecology of Beijing Normal University (2014-ZY-06), the Programme of Introducing Talents of Discipline to Universities (B08008), and the Integrated Risk Governance Project (2013DFG20710) by the Ministry of Science and Technology of China.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOCX 525 kb)
Rights and permissions
About this article
Cite this article
Zhang, Z., Song, X., Chen, Y. et al. Dynamic variability of the heading–flowering stages of single rice in China based on field observations and NDVI estimations. Int J Biometeorol 59, 643–655 (2015). https://doi.org/10.1007/s00484-014-0877-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00484-014-0877-6