[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Dynamic variability of the heading–flowering stages of single rice in China based on field observations and NDVI estimations

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Although many studies have indicated the consistent impact of warming on the natural ecosystem (e.g., an early flowering and prolonged growing period), our knowledge of the impacts on agricultural systems is still poorly understood. In this study, spatiotemporal variability of the heading–flowering stages of single rice was detected and compared at three different scales using field-based methods (FBMs) and satellite-based methods (SBMs). The heading–flowering stages from 2000 to 2009 with a spatial resolution of 1 km were extracted from the SPOT/VGT NDVI time series data using the Savizky–Golay filtering method in the areas in China dominated by single rice of Northeast China (NE), the middle-lower Yangtze River Valley (YZ), the Sichuan Basin (SC), and the Yunnan-Guizhou Plateau (YG). We found that approximately 52.6 and 76.3 % of the estimated heading–flowering stages by a SBM were within ±5 and ±10 days estimation error (a root mean square error (RMSE) of 8.76 days) when compared with those determined by a FBM. Both the FBM data and the SBM data had indicated a similar spatial pattern, with the earliest annual average heading–flowering stages in SC, followed by YG, NE, and YZ, which were inconsistent with the patterns reported in natural ecosystems. Moreover, diverse temporal trends were also detected in the four regions due to different climate conditions and agronomic factors such as cultivar shifts. Nevertheless, there were no significant differences (p > 0.05) between the FBM and the SBM in both the regional average value of the phenological stages and the trends, implying the consistency and rationality of the SBM at three scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9

Similar content being viewed by others

References

  • Badeck F-W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162(2):295–309. doi:10.1111/j.1469-8137.2004.01059.x

    Article  Google Scholar 

  • Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci U S A 96(17):9701–9704. doi:10.1073/pnas.96.17.9701

    Article  CAS  Google Scholar 

  • Bradley BA, Jacob RW, Hermance JF, Mustard JF (2007) A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens Environ 106(2):137–145. doi:10.1016/j.rse.2006.08.002

    Article  Google Scholar 

  • Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens Environ 91(3–4):332–344. doi:10.1016/j.rse.2004.03.014

    Article  Google Scholar 

  • Chen X, Hu B, Yu R (2005) Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Glob Chang Biol 11(7):1118–1130. doi:10.1111/j.1365-2486.2005.00974.x

    Article  Google Scholar 

  • Chmielewski F-M, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121(1–2):69–78. doi:10.1016/S0168-1923(03)00161-8

    Article  Google Scholar 

  • Cong N, Piao S, Chen A, Wang X, Lin X, Chen S, Han S, Zhou G, Zhang X (2012) Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model analysis. Agric For Meteorol 165:104–113. doi:10.1016/j.agrformet.2012.06.009

    Article  Google Scholar 

  • Devries ME, Leffelaar PA, Sakane N, Bado BV, Giller KE (2011) Adaptability of irrigated rice to temperature change in Sahelian environments. Exp Agric 47(1):69–87. doi:10.1017/s0014479710001328

    Article  Google Scholar 

  • Dingkuhn M, Le Gal P-Y (1996) Effect of drainage date on yield and dry matter partitioning in irrigated rice. Field Crop Res 46(1–3):117–126. doi:10.1016/0378-4290(95)00094-1

    Article  Google Scholar 

  • Doi H, Takahashi M, Katano I (2010) Genetic diversity increases regional variation in phenological dates in response to climate change. Glob Chang Biol 16(1):373–379. doi:10.1111/j.1365-2486.2009.01993.x

    Article  Google Scholar 

  • Estrella N, Sparks TH, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Chang Biol 13(8):1737–1747. doi:10.1111/j.1365-2486.2007.01374.x

    Article  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296(5573):1689–1691. doi:10.1126/science.1071617

    Article  CAS  Google Scholar 

  • Foerster S, Kaden K, Foerster M, Itzerott S (2012) Crop type mapping using spectral–temporal profiles and phenological information. Comput Electron Agric 89:30–40. doi:10.1016/j.compag.2012.07.015

    Article  Google Scholar 

  • García-Mozo H, Mestre A, Galán C (2010) Phenological trends in southern Spain: a response to climate change. Agric For Meteorol 150(4):575–580. doi:10.1016/j.agrformet.2010.01.023

    Article  Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7(11):1417–1434. doi:10.1080/01431168608948945

    Article  Google Scholar 

  • Howell D (2002) Statistical methods for psychology. Duxbury. p 324–325

  • Huang J, Wang X, Li X, Tian H, Pan Z (2013) Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR. PLoS ONE 8(8). doi:10.1371/journal.pone.0070816

  • Ibanez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Philos Trans R Soc B Biol Sci 365(1555):3247–3260. doi:10.1098/rstb.2010.0120

    Article  Google Scholar 

  • IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, and Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, USA

  • Jeganathan C, Dash J, Atkinson PM (2014) Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sens Environ 143:154–170. doi:10.1016/j.rse.2013.11.020

    Article  Google Scholar 

  • Jeong S-J, Ho C-H, Gim H-J, Brown ME (2011) Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob Chang Biol 17(7):2385–2399. doi:10.1111/j.1365-2486.2011.02397.x

    Article  Google Scholar 

  • Jonsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens 40(8):1824–1832. doi:10.1109/TGRS.2002.802519

    Article  Google Scholar 

  • Jonsson P, Eklundh L (2004) TIMESAT—a program for analyzing time-series of satellite sensor data. Comput Geosci 30(8):833–845. doi:10.1016/j.cageo.2004.05.006

    Article  Google Scholar 

  • Karlsen S, Hogda K, Wielgolaski F, Tolvanen A, Tommervik H, Poikolainen J, Kubin E (2009) Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data. Clim Res 39(3):275–286. doi:10.3354/cr00828

    Article  Google Scholar 

  • Kross A, Fernandes R, Seaquist J, Beaubien E (2011) The effect of the temporal resolution of NDVI data on season onset dates and trends across Canadian broadleaf forests. Remote Sens Environ 115(6):1564–1575. doi:10.1016/j.rse.2011.02.015

    Article  Google Scholar 

  • Li Z, Tang H, Yang P, Wu W, Chen Z, Zhou Q, Zhang L, Zou J (2012) Spatio-temporal responses of cropland phenophases to climate change in Northeast China. J Geogr Sci 22(1):29–45. doi:10.1007/s11442-012-0909-2

    Article  CAS  Google Scholar 

  • Li Z, Yang P, Tang H, Wu W, Yin H, Liu Z, Zhang L (2014) Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Reg Environ Chang 14(1):39–48. doi:10.1007/s10113-013-0503-x

    Article  Google Scholar 

  • Liu Y, Wang E, Yang X, Wang J (2010) Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Glob Chang Biol 16(8):2287–2299. doi:10.1111/j.1365-2486.2009.02077.x

    Article  Google Scholar 

  • Liu L, Wang E, Zhu Y, Tang L (2012) Contrasting effects of warming and autonomous breeding on single-rice productivity in China. Agric Ecosyst Environ 149:20–29. doi:10.1016/j.agee.2011.12.008

    Article  Google Scholar 

  • Lobell DB, Sibley A, Ivan Ortiz-Monasterio J (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2(3):186–189. doi:10.1038/nclimate1356

    Article  Google Scholar 

  • Lu P, Yu Q, Liu H, He Q (2006) Effects of changes in spring temperature on flowering dates of woody plants across China. Bot Stud 47(2):153–161

    Google Scholar 

  • McCloy KR, Lucht W (2004) Comparative evaluation of seasonal patterns in long time series of satellite image data and simulations of a global vegetation model. IEEE Trans Geosci Remote Sens 42(1):140–153. doi:10.1109/tgrs.2003.817811

    Article  Google Scholar 

  • Mei F, Wu X, Yao C et al (1988) Rice cropping regionalization in China. Chin J Rice Sci 2(3):97–110 (in Chinese with English abstract)

    Google Scholar 

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Chang Biol 7(6):657–666. doi:10.1111/j.1365-2486.2001.00430.x

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-KÜBler K, Bissolli P, BraslavskÁ OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, MÅGe F, Mestre A, Nordli Ø, PeÑUelas J, Pirinen P, RemiŠOvÁ V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Global Change Biology 12(10):1969–1976. doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Moldenhauer K, Slaton N (2001) Rice growth and development. In: Slaton NA (ed) Rice production handbook. Misc. Publ. 192. Coop. Ext. Serv., Univ. of Arkansas, Little Rock, pp 7–14

    Google Scholar 

  • Morin X, Roy J, Sonié L, Chuine I (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186(4):900–910. doi:10.1111/j.1469-8137.2010.03252.x

    Article  Google Scholar 

  • Papademetrieu MK (ed.) (2000) Bridging the rice yield gap in the Asia-Pacific Region. FAO RAP Publication, p 219

  • Piao S, Fang J, Zhou L, Ciais P, Zhu B (2006) Variations in satellite-derived phenology in China's temperate vegetation. Glob Chang Biol 12(4):672–685. doi:10.1111/j.1365-2486.2006.01123.x

    Article  Google Scholar 

  • Romanovskaja D, Kalvane G, Briede A, Baksiene E (2009) The influence of climate warming on the changes of the length of phenological seasons in Lithuania and Latvia. Zemdirbyste-Agriculture 96(4):218–231

    Google Scholar 

  • Sacks WJ, Kucharik CJ (2011) Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agric For Meteorol 151(7):882–894. doi:10.1016/j.agrformet.2011.02.010

    Article  Google Scholar 

  • Sakamoto T, Wardlow BD, Gitelson AA, Verma SB, Suyker AE, Arkebauer TJ (2010) A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sens Environ 114(10):2146–2159. doi:10.1016/j.rse.2010.04.019

    Article  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639. doi:10.1021/ac60214a047

    Article  CAS  Google Scholar 

  • Sehgal VK, Jain S, Aggarwal PK, Jha S (2011) Deriving crop phenology metrics and their trends using times series NOAA-AVHRR NDVI Data. J Indian Soc Remote Sens 39(3):373–381. doi:10.1007/s12524-011-0125-z

    Article  Google Scholar 

  • Setiyono TD, Weiss A, Specht J, Bastidas AM, Cassman KG, Dobermann A (2007) Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions. Field Crop Res 100(2–3):257–271. doi:10.1016/j.fcr.2006.07.011

    Article  Google Scholar 

  • Sheather SJ (2004) Density estimation. Stat Sci 19(4):588–597. doi:10.1214/088342304000000297

    Article  Google Scholar 

  • Siebert S, Ewert F (2012) Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric For Meteorol 152:44–57. doi:10.1016/j.agrformet.2011.08.007

    Article  Google Scholar 

  • Sparks TH, Carey PD (1995) The Responses of Species to Climate Over Two Centuries: An Analysis of the Marsham Phenological Record, 1736–1947. J Ecol 83(2):321–329. doi:10.2307/2261570

    Article  Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44(2):82–87. doi:10.1007/s004840000049

    Article  CAS  Google Scholar 

  • Sun W, Huang Y (2011) Global warming over the period 1961–2008 did not increase high-temperature stress but did reduce low-temperature stress in irrigated rice across China. Agric For Meteorol 151(9):1193–1201. doi:10.1016/j.agrformet.2011.04.009

    Article  Google Scholar 

  • Sun H, Huang J, Peng D (2009) Detecting major growth stages of paddy rice using MODIS data. J Remote Sens 13(6):1122–1137

    Google Scholar 

  • Tao F, Zhang S, Zhang Z (2012) Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. Eur J Agron 43:201–212. doi:10.1016/j.eja.2012.07.005

    Article  Google Scholar 

  • Tao F, Zhang Z, Shi W, Liu Y, Xiao D, Zhang S, Zhu Z, Wang M, Liu F (2013) Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite. Glob Chang Biol 19(10):3200–3209. doi:10.1111/gcb.12250

    Article  Google Scholar 

  • Thornton PK, Jones PG, Alagarswamy G, Andresen J (2009) Spatial variation of crop yield response to climate change in East Africa. Glob Environ Chang 19(1):54–65. doi:10.1016/j.gloenvcha.2008.08.005

    Article  Google Scholar 

  • Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci U S A 104(50):19686–19690. doi:10.1073/pnas.0701728104

    Article  CAS  Google Scholar 

  • Vitasse Y, François C, Delpierre N, Dufrêne E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151(7):969–980. doi:10.1016/j.agrformet.2011.03.003

    Article  Google Scholar 

  • Wang X, Piao S, Ciais P, Li J, Friedlingstein P, Koven C, Chen A (2011) Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc Natl Acad Sci U S A 108(4):1240–1245. doi:10.1073/pnas.1014425108

    Article  CAS  Google Scholar 

  • Wang H, Chen J, Wu Z, Lin H (2012) Rice heading date retrieval based on multi-temporal MODIS data and polynomial fitting. Int J Remote Sens 33(6):1905–1916. doi:10.1080/01431161.2011.603378

    Article  Google Scholar 

  • Wu W, Yang P, Tang H, Zhou Q, Chen Z, Shibasaki R (2010) Characterizing spatial patterns of phenology in cropland of China based on remotely sensed data. Agric Sci China 9(1):101–112. doi:10.1016/s1671-2927(09)60073-0

    Article  Google Scholar 

  • Yao F, Xu Y, Lin E, Yokozawa M, Zhang J (2007) Assessing the impacts of climate change on rice yields in the main rice areas of China. Clim Chang 80(3–4):395–409. doi:10.1007/s10584-006-9122-6

    Article  CAS  Google Scholar 

  • Zhang S, Tao F (2013) Modeling the response of rice phenology to climate change and variability in different climatic zones: comparisons of five models. Eur J Agron 45:165–176. doi:10.1016/j.eja.2012.10.005

    Article  Google Scholar 

  • Zhang T, Huang Y, Yang X (2013) Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob Chang Biol 19(2):563–570. doi:10.1111/gcb.12057

    Article  Google Scholar 

  • Zhang S, Tao F, Zhang Z (2014) Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981–2009. Eur J Agron 54:70–83. doi:10.1016/j.eja.2013.12.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Fund for Creative Research Groups of National Natural Science Foundation of China (no. 41321001), the State Key Laboratory of Earth Surface Processes and Resource Ecology of Beijing Normal University (2014-ZY-06), the Programme of Introducing Talents of Discipline to Universities (B08008), and the Integrated Risk Governance Project (2013DFG20710) by the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Song, X., Chen, Y. et al. Dynamic variability of the heading–flowering stages of single rice in China based on field observations and NDVI estimations. Int J Biometeorol 59, 643–655 (2015). https://doi.org/10.1007/s00484-014-0877-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-014-0877-6

Keywords