[go: up one dir, main page]

Skip to main content
Log in

Ground and remote sensing-based measurements of leaf area index in a transitional forest and seasonal flooded forest in Brazil

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Leaf area index (LAI) is a key driver of forest productivity and evapotranspiration; however, it is a difficult and labor-intensive variable to measure, making its measurement impractical for large-scale and long-term studies of tropical forest structure and function. In contrast, satellite estimates of LAI have shown promise for large-scale and long-term studies, but their performance has been equivocal and the biases are not well known. We measured total, overstory, and understory LAI of an Amazon-savanna transitional forest (ASTF) over 3 years and a seasonal flooded forest (SFF) during 4 years using a light extinction method and two remote sensing methods (LAI MODIS product and the Landsat-METRIC method), with the objectives of (1) evaluating the performance of the remote sensing methods, and (2) understanding how total, overstory and understory LAI interact with micrometeorological variables. Total, overstory and understory LAI differed between both sites, with ASTF having higher LAI values than SFF, but neither site exhibited year-to-year variation in LAI despite large differences in meteorological variables. LAI values at the two sites have different patterns of correlation with micrometeorological variables. ASTF exhibited smaller seasonal variations in LAI than SFF. In contrast, SFF exhibited small changes in total LAI; however, dry season declines in overstory LAI were counteracted by understory increases in LAI. MODIS LAI correlated weakly to total LAI for SFF but not for ASTF, while METRIC LAI had no correlation to total LAI. However, MODIS LAI correlated strongly with overstory LAI for both sites, but had no correlation with understory LAI. Furthermore, LAI estimates based on canopy light extinction were correlated positively with seasonal variations in rainfall and soil water content and negatively with vapor pressure deficit and solar radiation; however, in some cases satellite-derived estimates of LAI exhibited no correlation with climate variables (METRIC LAI or MODIS LAI for ASTF). These data indicate that the satellite-derived estimates of LAI are insensitive to the understory variations in LAI that occur in many seasonal tropical forests and the micrometeorological variables that control seasonal variations in leaf phenology. While more ground-based measurements are needed to adequately quantify the performance of these satellite-based LAI products, our data indicate that their output must be interpreted with caution in seasonal tropical forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen R, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J Irrig Drain Eng 133(4):380–394. doi:10.1061/(ASCE)0733-9437(2007)133:4(380)

    Google Scholar 

  • Aragão LEOC, Shimabukuro YE, Espírito-Santo FDB, Williams M (2005) Spatial validation of the collection 4 MODIS LAI product in Eastern Amazonia. IEEE Trans Geosci Remote Sens 43(11):2526–2534. doi:10.1109/TGRS.2005.856632

    Google Scholar 

  • Arieira J, Nunes da Cunha C (2006) Fitossociologia de uma floresta inundável monodominante de Vochysia divergens Pohl (Vochysiaceae), no Pantanal Norte, MT, Brasil. Acta Bot Bras 20(3):569–580. doi:10.1590/S0102-33062006000300007

  • Bartemucci P, Messier C, Canham CD (2006) Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. J For Res 36(9):2065–2079. doi:10.1139/x06-088

    Google Scholar 

  • Bezerra MVC, Silva BB, Bezerra B (2011) Avaliação dos efeitos atmosféricos no albedo e NDVI obtidos com imagens de satélite. Rev Bras Eng Agríc Ambient 15(7):709–717. doi:10.1590/S1415-43662011000700009

  • Biudes MS, Campelo Júnior JH, Nogueira JS, Sanches L (2009) Estimativa do balanço de energia em cambarazal e pastagem no norte do Pantanal pelo método da razão de Bowen. Rev Bras Meteorol 24(2):135–143. doi:10.1590/S0102-77862009000200003

  • Biudes MS, Nogueira JS, Dalmagro HJ, Machado NG, Danelichen VHM, Souza MC (2012) Mudança no microclima provocada pela conversão de uma floresta de cambará em pastagem no norte do Pantanal. Rev Ciências Agro-Ambientais (Online) 10:61–68

    Google Scholar 

  • Bréda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54(392):2403–2417. doi:10.1093/jxb/erg263

    Google Scholar 

  • Chander G, Markham BL, Barsi JA (2007) Revised Landsat 5 thematic mapper radiometric calibration. IEEE Trans Geosci Remote Sens 4(3):490–494. doi:10.1109/LGRS.2007.898285

    Article  Google Scholar 

  • Chason JW, Baldocchi DD, Huston MA (1991) Comparison of direct and indirect methods for estimating forest canopy leaf-area. Agric For Meteorol 57:107–128. doi:10.1016/0168-1923(91)90081-Z

    Article  Google Scholar 

  • Dalmagro HJ, Lobo FA, Vourlitis GL, Dalmolin ÂC, Antunes MZ Jr, Ortíz CER, Nogueira JS (2013) Photosynthetic parameters of two invasive tree species of the Brazilian Pantanal in response to seasonal flooding. Photosynthetica 51(2):281–294. doi:10.1007/s11099-013-0024-3

    Article  CAS  Google Scholar 

  • da Rocha HR, Goulden ML, Miller SD, Menton MC, Pinto LDVO, Freitas HC, Figuera AMS (2004) Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl 14:22–32. doi:10.1890/02-6001

    Article  Google Scholar 

  • Doughty CE, Goulden ML (2008) Seasonal patterns of tropical forest leaf area index and CO2 exchange. J Geophys Res Biogeosci 113(G1):G00B06. doi:10.1029/2007JG000590

    Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Book  Google Scholar 

  • Ellsworth DS, Reich PB (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178

    Article  Google Scholar 

  • Fuchs M, Asrar G, Kanemasu ET, Hipps LE (1984) Leaf-area estimates from measurements of photosynthetically active radiation in wheat canopies. Agric For Meteorol 32(1):13–22. doi:10.1016/0168-1923(84)90024-8

    Article  Google Scholar 

  • Goudriaan J (1988) The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange. Agric For Meteorol 43:155–169. doi:10.1016/0168-1923(88)90089-5

    Article  Google Scholar 

  • Goulden ML, Miller SD, da Rocha HR, Menton MC, Freitas HC, Figueira AMS, Sousa CAD (2004) Diel and seasonal patterns of tropical forest CO2 exchange. Ecol Appl 14:42–54

    Article  Google Scholar 

  • Grace J, Malhi Y, Lloyd J, Mcintyre J, Miranda AC, Meir P, Miranda HS (1996) The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Glob Chang Biol 2:209–217. doi:10.1111/j.1365-2486.1996.tb00073.x

    Article  Google Scholar 

  • Hermance JF, Jacob RW, Bradley BA, Mustard JF (2007) Extracting phenological signals from multiyear AVHRR NDVI time series: framework for applying high-order annual splines. IEEE Trans Geosci Remote Sens 45(10):3264–3276. doi:10.1109/TGRS.2007.903044

    Article  Google Scholar 

  • Hird JN, McDermid GJ (2009) Noise reduction of NDVI time series: an empirical comparison of selected techniques. Remote Sens Environ 113:248–258. doi:10.1016/j.rse.2008.09.003

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:53–70. doi:10.1016/0034-4257(88)90106-X

    Article  Google Scholar 

  • Hutyra LR, Munger JW, Saleska SR, Gottlieb EW, Daube BC, Dunn AL, Amaral DF, Camargo PB, Wofsy SC (2007) Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. J Geophys Res 112, G03008. doi:10.1029/2006JG000365

  • Iqbal M (1983) An introduction to solar radiation. Academic, Toronto

    Google Scholar 

  • Ishida A, Yamamura Y, Hori Y (1992) Roles of leaf water potential and soil-to-leaf hydraulic conductance in water use by understorey woody plants. Ecol Res 7(3):213–223

    Article  Google Scholar 

  • Jonckheere I, Fleck S, Nackaerts K, Muysa B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35. doi:10.1016/j.agrformet.2003.08.027

    Article  Google Scholar 

  • Knyazikhin Y, Martonchik JV, Diner DJ, Myneni RB, Verstraete M, Pinty B, Gobron N (1998) Estimation of vegetation leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. J Geophys Res 103(D24):32239–32256. doi:10.1029/98JD02461

    Article  Google Scholar 

  • Markham BL, Barker JL (1986) Landsat MSS and TM postcalibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures. EOSAT Landsat Tech Notes 1:3–8

    Google Scholar 

  • Meyers TP, Paw UKT (1987) Modelling the plant canopy micrometeorology with higher-order closure principles. Agric For Meteorol 41(1–2):143–163. doi:10.1016/0168-1923(87)90075-X

    Article  Google Scholar 

  • Misson L, Baldocchi D, Black T, Blanken P, Brunet Y, Curielyuste J, Dorsey J, Falk M, Granier A, Irvine M (2007) Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: a synthesis based on FLUXNET data. Agric For Meteorol 144(1–2):14–31. doi:10.1016/j.agrformet.2007.01.006

    Article  Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfakor in den Pflanzengesellschaften, seine Bedeutung für die Stoffproduckion. Jpn J Bot 14:22–52

    Google Scholar 

  • Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83(2):214–231

    Article  Google Scholar 

  • Nunes da Cunha C, Junk WJ (2004) Year-to-year changes in water level drive the invasion of Vochysia divergens in Pantanal glassland. Appl Veg Sci 7:103–110

    Google Scholar 

  • Phillips OL, Aragão EOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Bánki O, Blanc L, Bonal D, Brando P, Chave J, Alves de Oliveira ÁC, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patiño S, Peñuela MC, Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas AS, ter Steege H, Stropp J, Vásquez R, Zelazowski P, Dávila EA, Andelman S, Andrade A, Chao K-J, Erwin T, Di Fiore A, Honorio E, Keeling CH, Killeen TJ, Laurance WF, Peña Cruz A, Pitman NCA, Núñez Vargas P, Ramírez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347. doi:10.1126/science.1164033

    Article  CAS  Google Scholar 

  • Pinto-Júnior OB, Sanches L, de Almeida Lobo F, Brandão AA, de Souza Nogueira J (2011) Leaf area index of a tropical semi-deciduous forest of the southern Amazon Basin. Int J Biometeorol 55(2):109–118. doi:10.1007/s00484-010-0317-1

    Article  Google Scholar 

  • Pott A, Pott VJ (1994) Plantas do Pantanal. Empresa Brasileira de Pesquisa Agropecuária. Centro de Pesquisa Agropecuária do Pantanal, Corumbá

    Google Scholar 

  • Priante-Filho N, Vourtilis GL, Hayashi MMS, Nogueira JS, Campelo-Junior JH, Nunes PC, Sanches L, Couto EG, Hoeger W, Raiter F, Trienweiler JL, Miranda EJ, Priante PC, Fritzen CL, Lacerda M, Pereira LC, Biudes MS, Suli GS, Shiraiwa S, Paulo SR, Silveira M (2004) Comparison of the mass and energy exchange of a pasture and a mature transitional tropical forest of the southern Amazon Basin during a seasonal transition. Glob Chang Biol 10:863–876. doi:10.1111/j.1529-8817.2003.00775.x

    Article  Google Scholar 

  • Ramos AM, dos Santos LAR, Fortes LTG (2009) Normais Climatológicas do Brasil 1961-1990, Brasília

  • Ratana P, Huete AR, Ferreira L (2005) Analysis of Cerrado physiognomies and conversion in the MODIS seasonal–temporal domain. Earth Interact 9:1–22. doi:10.1175/1087-3562(2005)009<0001:AOCPAC>2.0.CO;2

    Article  Google Scholar 

  • Rivera G, Elliot S, Caldas LS, Nicolossi G, Coradin VTR, Borchert R (2002) Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16(7):445–456. doi:10.1007/s00468-002-0185-3

    Article  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557. doi:10.1126/science.1091165

    Article  CAS  Google Scholar 

  • Saleska SR, Didan K, Huete AR, da Rocha HR (2007) Amazon forests green-up during 2005 drought. Science 318(5850):612. doi:10.1126/science.1146663

    Article  CAS  Google Scholar 

  • Samanta A, Ganguly S, Hashimoto H, Devadiga S, Vermote E, Knyazikhin Y, Nemani RR, Myneni RB (2010) Amazon forests did not green-up during the 2005 drought. Geophys Res Lett 37, L05401. doi:10.1029/2009GL042154

  • Sanches L, Valentini CMA, Pinto Júnior OB, Nogueira JS, Vourlitis GL, Biudes MS, da Silva CJ, Bambi P, Lobo FA (2008) Seasonal and interannual litter dynamics of a tropical semideciduous forest of the southern Amazon Basin, Brazil. J Geophys Res 113, G04007. doi:10.1029/2007JG000593

  • Shabanov NV, Huang D, Yang W, Tan B, Knyazikhin Y, Myneni RB, Ahl DE, Gower ST, Huete A, Aragão LECO, Shimabukuro YE (2005) Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests. IEEE Trans Geosci Remote Sens 43(8):1855–1865. doi:10.1109/TGRS.2005.852477

    Article  Google Scholar 

  • Spanner M, Johnson L, Miller J, McCreight R, Freemantle J, Runyon J, Gong P (1994) Remote sensing of seasonal leaf area index across the Oregon transect. Ecol Appl 4:258–271

    Article  Google Scholar 

  • Tasumi M, Allen RG, Trezza R (2008) At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. J Hydrol Eng 13(2):51–63. doi:10.1061/(ASCE)1084-0699(2008)13:2(51)

    Article  Google Scholar 

  • Unsworth MH, Phillips N, Link T, Bond BJ, Falk M, Harmon ME, Hinckley TM, Marks D, Paw UKT (2004) Components and controls of water flux in an old-growth Douglas-fir–Western Hemlock ecosystem. Ecosystems 7(5):468–481. doi:10.1007/s10021-004-0138-3

    Article  Google Scholar 

  • Vourlitis GL, Priante-Filho N, Hayashi MMS, Nogueira JS, Caseiro FT, Campelo JH (2002) Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water Resour Res 38(6):1094. doi:10.1029/2000WR000122

    Article  Google Scholar 

  • Vourlitis GL, Nogueira JS, Lobo FA, Sendall KM, Faria JLB, Dias CAA, Andrade NLR (2008) Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resour Res 44, W03412. doi:10.1029/2006WR005526

  • Vourlitis GL, Lobo FA, Zeilhofer P, Nogueira JS (2011) Temporal patterns of net CO2 exchange for a tropical semideciduous forest of the southern Amazon Basin. J Geophys Res 116, G03029. doi:10.1029/2010JG001524

  • Wang W, Liang S (2008) Estimation of high-spatial resolution clear sky longwave downward and net radiation over land surfaces from MODIS data. Remote Sens Environ 113(4):745–754. doi:10.1016/j.rse.2008.12.004

    Article  Google Scholar 

  • Wang Q, Tenhunen J, Granier A, Reichstein M, Bouriaud O, Nguyen D, Breda N (2004) Long-term variations in leaf area index and light extinction in a Fagus sylvatica stand as estimated from global radiation profiles. Theor Appl Climatol 79:225–238. doi:10.1007/s00704-004-0074-3

    Article  Google Scholar 

  • Wasseige C, Bastin D, Defourny P (2003) Seasonal variation of tropical forest LAI based on field measurements in Central African Republic. Agric For Meteorol 119:181–194. doi:10.1016/S0168-1923(03)00138-2

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–92. doi:10.1007/s00484-010-0317-1

    Article  Google Scholar 

  • Wirth R, Weber B, Ryel RR (2001) Spatial and temporal variability of canopy structure in a tropical moist forest. Acta Oecologia 22(5–6):235–244. doi:10.1016/S1146-609X(01)01123-7

    Article  Google Scholar 

  • Yang W, Tan B, Huang D, Rautiainen M, Shabanov NV, Wang Y, Privette JL, Huemmrich KF, Fensholt R, Sandholt I, Weiss M, Nemani RR, Knyazikhin Y, Myneni RB (2006) MODIS leaf area index products: from validation to algorithm improvement. IEEE Trans Geosci Remote Sens 44(7):1885–1898. doi:10.1109/TGRS.2006.871215

    Article  Google Scholar 

  • Zeilhofer P (2006) Soil mapping in the Pantanal of Mato Grosso, Brazil, using Multitemporal Landsat TM data. Wetl Ecol Manag 14(5):445–461. doi:10.1007/s11273-006-0007-2

    Article  Google Scholar 

  • Zeilhofer P, Sanches L, Vourlitis GV, Andrade NLR (2012) Seasonal variations in litter production and its relation with MODIS vegetation indices in a semi-deciduous forest of Mato Grosso. Remote Sens Lett 3(1):1–9. doi:10.1080/01431161.2010.523025

  • Zheng G, Moskal LM (2009) Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors. Sensors 9:2719–2745. doi:10.3390/s90402719

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Sacardi Biudes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biudes, M.S., Machado, N.G., Danelichen, V.H.M. et al. Ground and remote sensing-based measurements of leaf area index in a transitional forest and seasonal flooded forest in Brazil. Int J Biometeorol 58, 1181–1193 (2014). https://doi.org/10.1007/s00484-013-0713-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0713-4

Keywords

Navigation