[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Climate change and consequences on the water cycle in the humid Xiangjiang River Basin, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Anthropogenic activities have altered the climate and led to changes in the water cycle. Understanding the climate change and hydrological responses is critical to derive adaptive strategies for sustainable water resources management. In this study, we diagnosed the trends of primary climate elements and hydrological components during the past half century (1960–2009) for the humid Xiangjiang River Basin in central-south China at multiple temporal and spatial scales. The air temperature trend demonstrated an overall warming climate but with a quicker pace in recent years; however, the wind speed reduced significantly in the early period, and this downtrend had largely disappeared after the mid-1990s. Under such a shifting climate, the hydrological responses were not monotonic during the past 50 years: the evapotranspiration behaved in a decreasing trend in the early 35 years (1960–1994), followed by an uptrend in the later period (1995–2009). The stepwise analysis of soil water content and baseflow demonstrated a wetting trend followed by a drying one but with a steeper slope, indicating an accelerated drying trend which may cause a concern in stream water availability especially in the dry season. Spatial trend analysis showed that some areas experienced a downtrend (drying) in the dry season, but most areas had an uptrend (wetting) in the wet season for the whole study period. Overall, the analyses of temporal and spatial changes are useful for decision makers to deal with the continuing changes in climate and hydrology. This study also highlighted the necessity of climate change studies at multiple temporal and spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092

    Article  CAS  Google Scholar 

  • Angstrom A (1924) Solar and Terrestrial Radiation. Quart J R Meteorol Soc 50:121–126

    Article  Google Scholar 

  • Arabi M, Frankenberger JR, Enge BA, Arnold JG (2008) Representation of agricultural conservation practices with SWAT. Hydrol Process 22:3042–3055. doi:10.1002/hyp.6890

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment—Part 1: model development. J Am Water Resour Assoc 34:73–89

    Article  CAS  Google Scholar 

  • Arnold JG, Kiniry JR, Srinivasan R, Williams JR, Haney EB, Neitsch SL (2012) Soil and water assessment tool input/output documentation. Version 2012 edn. Texas Water Resources Institute, Grassland, soil and research service, Temple

  • Bates B, Kundzewicz ZW, Wu S, Palutikof J (2008) Climate change and water. IPCC Secretariat, Geneva

    Google Scholar 

  • Bouraoui F, Benabdallah S, Jrad A, Bidoglio G (2004) Application of the SWAT model on the Medjerda River Basin (Tunisia). In: Workshop on sustainable catchment management, Nice, Apr 25–30 2004, pp 497–507. doi:10.1016/j.pce.2005.07.004

  • Chen J, Wu Y (2012) Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features. J Hydrol 420–421:319–328. doi:10.1016/j.jhydrol.2011.12.022

    Article  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Article  Google Scholar 

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284:244–252. doi:10.1016/j.jhydrol.2003.08.005

    Article  CAS  Google Scholar 

  • Grieser J, Beck C (2006) Variability and triggering factors of observed global mean land-surface precipitation since 1951. vol DWD, Klimastatusbericht 2005. Dtsch. Wetterdienst, Offenbach

  • Houghton JT et al (2001) Climate Change 2001: the Scientific Basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hu Q, Yang D, Wang Y, Yang H (2010) Effects ofAngstrom coefficients onET0 estimation and the applicability of FAO recommended coefficient values in China. Adv Water Sci 21:644–652

    Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95. doi:10.1016/j.jhydrol.2005.07.003

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: The physical science basis. contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Hole-filled seamless SRTM data V3. International Centre for Tropical Agriculture (CIAT), [available from http://srtm.csi.cgiar.org]

  • Jha M, Arnold JG, Gassman PW, Giorgi F, Gu RR (2006) Climate change sensitivity assessment on Upper Mississippi River Basin streamflows using SWAT. J Am Water Resour Assoc 42:997–1015

    Article  Google Scholar 

  • Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. Bull Am Meteorol Soc 79:231–241

    Article  Google Scholar 

  • Keshta N, Elshorbagy A, Carey S (2012) Impacts of climate change on soil moisture and evapotranspiration in reconstructed watersheds in northern Alberta, Canada. Hydrol Process 26:1321–1331. doi:10.1002/hyp.8215

    Article  Google Scholar 

  • Kim S, Kim BS, Jun H, Kim HS (2014) Assessment of future water resources and water scarcity considering the factors of climate change and social-environmental change in Han River basin, Korea. Stoch Env Res Risk Assess 28:1999–2014. doi:10.1007/s00477-014-0924-1

    Article  Google Scholar 

  • Kwon H-H, Sivakumar B, Moon Y-I, Kim B-S (2011) Assessment of change in design flood frequency under climate change using a multivariate downscaling model and a precipitation-runoff model. Stoch Env Res Risk Assess 25:567–581. doi:10.1007/s00477-010-0422-z

    Article  Google Scholar 

  • Kyoung MS, Kim HS, Sivakumar B, Singh VP, Ahn KS (2011) Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change. Stoch Environ Res Risk Assess 25:613–625. doi:10.1007/s00477-010-0425-9

    Article  Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241. doi:10.1029/1998wr900018

    Article  Google Scholar 

  • Li F, Xu Z, Liu W, Zhang Y (2014) The impact of climate change on runoff in the Yarlung Tsangpo River basin in the Tibetan Plateau. Stoch Env Res Risk Assess 28:517–526. doi:10.1007/s00477-013-0769-z

    Article  Google Scholar 

  • Liu M, Shen Y, Zeng Y, Liu C (2009) Changing trend of pan evaporation and its cause over the past 50 years in China. Acta Geogr Sin 64:259–269 (in Chinese)

    Google Scholar 

  • Luo Y, Liu S, Fu SL, Liu JS, Wang GQ, Zhou GY (2008) Trends of precipitation in Beijiang River basin, Guangdong Province, China. Hydrol Process 22:2377–2386. doi:10.1002/hyp.6801

    Article  Google Scholar 

  • Luo Q, Li Y, Wang K, Wu J (2013) Application of the SWAT model to the Xiangjiang riverwatershed in subtropical central China. Water Sci Technol 67:2110–2116

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  • Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J Hydrol 306:127–145. doi:10.1016/j.jhydrol.2004.09.005

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I A discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2005) Soil and water assessment tool theoretical documentation. Version 2005 edn, Grassland, Soil and Research Service, Temple

  • New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol 21:1899–1922

    Article  Google Scholar 

  • Obeysekera J, Irizarry M, Park J, Barnes J, Dessalegne T (2011) Climate change and its implications for water resources management in south Florida. Stoch Environ Res Risk Assess 25:495–516. doi:10.1007/s00477-010-0418-8

    Article  Google Scholar 

  • Piao SL et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51. doi:10.1038/nature09364

    Article  CAS  Google Scholar 

  • Qiu J (2010) China drought highlights future climate threats. Nature 465:142–143. doi:10.1038/465142a

    Article  CAS  Google Scholar 

  • Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8:1204–1213

    Article  Google Scholar 

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37:1169–1188

    Article  CAS  Google Scholar 

  • Schiermeier Q (2008) Water: a long dry summer. Nature 452:270–273. doi:10.1038/452270a

    Article  CAS  Google Scholar 

  • Singh J, Knapp HV, Arnold JG, Demissie M Hydrological modeling of the Iroquois River watershed using HSPF and SWAT. In: AWRA spring specialty conference on agricultural hydrology and water quality, Kansas City, May 2003, pp 343–360

  • Sivakumar B (2011) Global climate change and its impacts on water resources planning and management: assessment and challenges. Stoch Environ Res Risk Assess 25:583–600. doi:10.1007/s00477-010-0423-y

    Article  Google Scholar 

  • Sivakumar B, Christakos G (2011) Climate: patterns, changes, and impacts. Stoch Environ Res Risk Assess 25:443–444. doi:10.1007/s00477-010-0413-0

    Article  Google Scholar 

  • Skaar J, Sorgard L (2006) Temporary bottlenecks, hydropower and acquisitions. Scand J Econ 108:481–497. doi:10.1111/j.1467-9442.2006.00467.x

    Article  Google Scholar 

  • Stone MC, Hotchkiss RH, Hubbard CM, Fontaine TA, Mearns LO, Arnold JG (2001) Impacts of climate change on Missouri River Basin water yield. J Am Water Resour Assoc 37:1119–1129

    Article  Google Scholar 

  • Tavakoli M, De Smedt F (2012) Impact of climate change on streamflow and soil moisture in the Vermilion Basin, Illinois. J Hydrol Eng 17:1059–1070. doi:10.1061/(asce)he.1943-5584.0000546

    Article  Google Scholar 

  • Wild M, Grieser J, Schaer C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett. doi:10.1029/2008gl034842

    Google Scholar 

  • Winchell M, Srinivasan R, Di Luzio M, Arnold JG (2009) ArcSWAT 2.3.4 Interface For SWAT2005. Version 2005 edn, Grassland, soil and research service, Temple

  • Wu Y, Chen J (2012) An operation-based scheme for a multiyear and multipurpose reservoir to enhance macro-scale hydrologic models. J Hydrometeorol 13:270–283. doi:10.1175/JHM-D-10-05028.1

    Article  Google Scholar 

  • Wu Y, Chen J (2013) Analyzing the water budget and hydrological characteristics and responses to land use in a monsoonal climate river basin in South China. Environ Manag 51:1174–1186. doi:10.1007/s00267-013-0045-5

    Article  Google Scholar 

  • Wu Y, Liu S (2012) Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example. Environ Model Softw 31:99–109. doi:10.1016/j.envsoft.2011.11.013

    Article  Google Scholar 

  • Wu Y, Liu S (2014) Improvement of the R-SWAT-FME framework to support multiple variables and multi-objective functions. Sci Total Environ 466–467:455–466. doi:10.1016/j.scitotenv.2013.07.048

    Article  Google Scholar 

  • Wu Y, Liu S, Abdul-Aziz OI (2012) Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT. Clim Change 110:977–1003. doi:10.1007/s10584-011-0087-8

    Article  Google Scholar 

  • Wu Y et al (2014) Diagnosing climate change and hydrological responses in the past decades for a minimally-disturbed headwater basin in South China. Water Resour Manag 28:4385–4400. doi:10.1007/s11269-014-0758-0

    Article  Google Scholar 

  • Xu H, Xu C-Y, Chen H, Zhang Z, Li L (2013a) Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China. J Hydrol 505:1–12. doi:10.1016/j.jhydrol.2013.09.004

    Article  Google Scholar 

  • Xu H, Xu C-Y, Zhou B, Singh VP (2013b) Modelling runoff response to land-use change using an integrated approach in Xiangjiang River basin, China. IAHS-AISH 359:390–396

    Google Scholar 

  • Xu X, Liu W, Rafique R, Wang K (2013c) Revisiting continental US hydrologic change in the latter half of the 20th century. Water Resour Manag 27:4337–4348. doi:10.1007/s11269-013-0411-3

    Article  Google Scholar 

  • Xu X, Scanlon BR, Schilling K, Sun A (2013d) Relative importance of climate and land surface changes on hydrologic changes in the US Midwest since the 1930s: implications for biofuel production. J Hydrol 497:110–120. doi:10.1016/j.jhydrol.2013.05.041

    Article  Google Scholar 

  • Xu X, Yang H, Yang D, Ma H (2013e) Assessing the impacts of climate variability and human activities on annual runoff in the Luan River basin, China. Hydrol Res 44:940–952. doi:10.2166/nh.2013.144

    Article  Google Scholar 

  • Zeng S, Xia J, Du H (2014) Separating the effects of climate change and human activities on runoff over different time scales in the Zhang River basin. Stoch Environ Res Risk Assess 28:401–413. doi:10.1007/s00477-013-0760-8

    Article  Google Scholar 

  • Zhang Q, Xu C-Y, Tao H, Jiang T, Chen YD (2010) Climate changes and their impacts on water resources in the arid regions: a case study of the Tarim River basin, China. Stoch Environ Res Risk Assess 24:349–358. doi:10.1007/s00477-009-0324-0

    Article  CAS  Google Scholar 

  • Zhou Z, Shen C, Shi X, Li T (1986) Planning of water conservancy and water energy (in Chinese). China Water Resources and Electricity Press, Beijing

    Google Scholar 

  • Zhou G et al (2011) Quantifying the hydrological responses to climate change using an intact forested small watershed in southern China. Glob Change Biol 17:3736–3746. doi:10.1111/j.1365-2486.2011.02499.x

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Chinese Forestry Specific Research Grant for Public Benefits (201404316), Science Foundation of Hunan Province ([2013]7), Hunan Province Key Laboratory Project for Forest Ecology in Urban Areas, and Hunan Province Lutou Forest Ecosystem Research Station Project. The authors declared no conflict of interest exists. Y. Wu is currently affiliated with ASRC Federal, contractor to USGS EROS Center, Sioux Falls, USA. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Editorial comments from Adam Case and Ramesh Singh are greatly appreciated. We also thank the editor and the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuguang Liu or Wende Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liu, S., Yan, W. et al. Climate change and consequences on the water cycle in the humid Xiangjiang River Basin, China. Stoch Environ Res Risk Assess 30, 225–235 (2016). https://doi.org/10.1007/s00477-015-1073-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1073-x

Keywords

Navigation