Abstract
Retinal degenerative diseases such as retinitis pigmentosa (RP) are of the major causes of vision loss in developed countries. Despite the unclear pathophysiology, treatment methods have been investigated vastly in the past decades. This review article mainly discusses the advances in application of stem cell and progenitor transplantation for retinitis pigmentosa. Stem cell sources such as mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, neural stem cells, retinal progenitor cells, and olfactory ensheathing cells are discussed separately in addition to a brief description of two approaches for treatment of early-stage RP, including gene therapy and nutritional therapy.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M, Vandenberghe LH, Wilson JM, Marigo V, Surace EM (2007) Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 81:11372–11380
Almedawar S, Vafia K, Schreiter S, Neumann K, Khattak S, Kurth T, Ader M, Karl MO, Tsang SH, Tanaka EM (2020) MERTK-dependent ensheathment of photoreceptor outer segments by human pluripotent stem cell-derived retinal pigment epithelium. Stem Cell Reports 14:374–389. https://doi.org/10.1016/j.stemcr.2020.02.004
Andrews MR, Stelzner DJ (2007) Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord. J Neurotrauma 24:1773–1792. https://doi.org/10.1089/neu.2007.0353
Andrieu-Soler C, Doat M, Halhal M, Keller N, Jonet L, BenEzra D, Behar-Cohen F (2006) Enhanced oligonucleotide delivery to mouse retinal cells using iontophoresis. Mol vis 12:1098–1107
Arnhold S, Absenger Y, Klein H, Addicks K, Schraermeyer U (2007) Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Graefe’s Archive for Clinical and Experimental Ophthalmology 245:414–422
Artero-Castro A, Long K, Bassett A, Ávila-Fernandez A, Cortón M, Vidal-Puig A, Jendelova P, Rodriguez-Jimenez FJ, Clemente E, Ayuso C, Slaven E (2021) Gene correction recovers phagocytosis in retinal pigment epithelium derived from retinitis pigmentosa-human-induced pluripotent stem cells. Int J Mol Sci 22. https://doi.org/10.3390/ijms22042092
Artero Castro A, Long K, Bassett A, Machuca C, León M, Ávila-Fernandez A, Cortón M, Vidal-Puig T, Ayuso C, Lukovic D, Erceg S (2019) Generation of gene-corrected human induced pluripotent stem cell lines derived from retinitis pigmentosa patient with Ser331Cysfs*5 mutation in MERTK. Stem Cell Research 34. https://doi.org/10.1016/j.scr.2018.11.003
Barnea-Cramer AO, Wang W, Lu S-J, Singh MS, Luo C, Huo H, McClements ME, Barnard AR, MacLaren RE, Lanza R (2016) Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Scientific Reps 6
Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB (2016) Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Scientific reps 6
Beltran WA, Cideciyan AV, Boye SE, Ye GJ, Iwabe S, Dufour VL, Marinho LF, Swider M, Kosyk MS, Sha J, Boye SL, Peterson JJ, Witherspoon CD, Alexander JJ, Ying GS, Shearman MS, Chulay JD, Hauswirth WW, Gamlin PD, Jacobson SG, Aguirre GD (2017) Optimization of retinal gene therapy for X-linked retinitis pigmentosa due to RPGR mutations. Mol Ther 25:1866–1880. https://doi.org/10.1016/j.ymthe.2017.05.004
Beltran WA, Cideciyan AV, Lewin AS, Iwabe S, Khanna H, Sumaroka A, Chiodo VA, Fajardo DS, Román AJ, Deng W-T (2012) Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci 109:2132–2137
Bemelmans A-P, Kostic C, Crippa SV, Hauswirth WW, Lem J, Munier FL, Seeliger MW, Wenzel A, Arsenijevic Y (2006) Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis. PLoS Med 3:e347
Ben M’Barek K, Bertin S, Brazhnikova E, Jaillard C, Habeler W, Plancheron A, Fovet CM, Demilly J, Jarraya M, Bejanariu A, Sahel JA, Peschanski M, Goureau O, Monville C (2020) Clinical-grade production and safe delivery of human ESC derived RPE sheets in primates and rodents. Biomaterials 230:119603. https://doi.org/10.1016/j.biomaterials.2019.119603
Ben M’Barek K, Habeler W, Plancheron A, Jarraya M, Goureau O, Monville C (2018) Engineering transplantation-suitable retinal pigment epithelium tissue derived from human embryonic stem cells. J vis Exp. https://doi.org/10.3791/58216
Bennett J, Zeng Y, Bajwa R, Klatt L, Li Y, Maguire A (1998) Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse. Gene therap 5
Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Willett WC (2012) ω-3 intake and visual acuity in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol 130:707–711
Bian B, Zhao C, He X, Gong Y, Ren C, Ge L, Zeng Y, Li Q, Chen M, Weng C, He J, Fang Y, Xu H, Yin ZQ (2020) Exosomes derived from neural progenitor cells preserve photoreceptors during retinal degeneration by inactivating microglia. J Extracell Vesicles 9:1748931–1748931. https://doi.org/10.1080/20013078.2020.1748931
Birch DG, Bennett LD, Duncan JL, Weleber RG, Pennesi ME (2016) Long-term follow-up of patients with retinitis pigmentosa receiving intraocular ciliary neurotrophic factor implants. Am J Ophthalmol 170:10–14. https://doi.org/10.1016/j.ajo.2016.07.013
Birch DG, Bernstein PS, Iannacone A, Pennesi ME, Lam BL, Heckenlively J, Csaky K, Hartnett ME, Winthrop KL, Jayasundera T, Hughbanks-Wheaton DK, Warner J, Yang P, Fish GE, Teske MP, Sklaver NL, Erker L, Chegarnov E, Smith T, Wahle A, VanVeldhuisen PC, McCormack J, Lindblad R, Bramer S, Rose S, Zilliox P, Francis PJ, Weleber RG (2018) Effect of oral valproic acid vs placebo for vision loss in patients with autosomal dominant retinitis pigmentosa: a randomized phase 2 multicenter placebo-controlled clinical trial. JAMA Ophthalmology 136:849–856. https://doi.org/10.1001/jamaophthalmol.2018.1171
Birch DG, Weleber RG, Duncan JL, Jaffe GJ, Tao W, Ciliary Neurotrophic Factor Retinitis Pigmentosa Study G (2013) Randomized trial of ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for retinitis pigmentosa. Am J Ophthalmol 156:283-292.e281. https://doi.org/10.1016/j.ajo.2013.03.021
Bolinches-Amorós A, León M, Del Buey FV, Marfany G, Gonzàlez-Duarte R, Erceg S, Lukovic D (2019) Generation of an iPSC line from a retinitis pigmentosa patient carrying a homozygous mutation in CERKL and a healthy sibling. Stem Cell Res 38:101455. https://doi.org/10.1016/j.scr.2019.101455
Boudreault K, Justus S, Lee W, Mahajan VB, Tsang SH (2016) Complication of autologous stem cell transplantation in retinitis pigmentosa. JAMA Ophthalmology 134:711–712
Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO (2009) Derivation of Functional Retinal Pigmented Epithelium from Induced Pluripotent Stem Cells Stem Cells 27:2427–2434
Cai S, Smith ME, Redenti SM, Wnek GE, Young MJ (2012) Mouse retinal progenitor cell dynamics on electrospun poly(-caprolactone). J Biomater Sci Polym Ed 23:1451–1465. https://doi.org/10.1163/092050611x584388
Canola K, Angénieux B, Tekaya M, Quiambao A, Naash MI, Munier FL, Schorderet DF, Arsenijevic Y (2007) Retinal Stem Cells Transplanted into Models of Late Stages of Retinitis Pigmentosa Preferentially Adopt a Glial or a Retinal Ganglion Cell Fate Investigative Ophthalmology & Visual Science 48:446–454
Cao J, Murat C, An W, Yao X, Lee J, Santulli-Marotto S, Harris IR, Inana G (2016) Human umbilical tissue-derived cells rescue retinal pigment epithelium dysfunction in retinal degeneration. Stem Cells 34:367–379
Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, Nanda A, Davies A, Wood LJ, Salvetti AP, Fischer MD, Aylward JW, Barnard AR, Jolly JK, Luo E, Lujan BJ, Ong T, Girach A, Black GCM, Gregori NZ, Davis JL, Rosa PR, Lotery AJ, Lam BL, Stanga PE, MacLaren RE (2020) Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med 26:354–359. https://doi.org/10.1038/s41591-020-0763-1
Cehajic Kapetanovic J, McClements ME, Martinez-Fernandez de la Camara C, MacLaren RE (2019) Molecular strategies for RPGR gene therapy. Genes (basel) 10. https://doi.org/10.3390/genes10090674
Charbel Issa P, MacLaren RE (2012) Non-viral retinal gene therapy: a review. Clin Experiment Ophthalmol 40:39–47. https://doi.org/10.1111/j.1442-9071.2011.02649.x
Cideciyan AV, Sudharsan R, Dufour VL, Massengill MT, Iwabe S, Swider M, Lisi B, Sumaroka A, Marinho LF, Appelbaum T, Rossmiller B, Hauswirth WW, Jacobson SG, Lewin AS, Aguirre GD, Beltran WA (2018) Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci U S A 115:E8547-e8556. https://doi.org/10.1073/pnas.1805055115
Cramer AO, MacLaren RE (2013) Translating induced pluripotent stem cells from bench to bedside: application to retinal diseases. Curr Gene Ther 13:139–151
Darrow JJ (2019) Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today 24:949–954. https://doi.org/10.1016/j.drudis.2019.01.019
Delgado D, del Pozo-Rodríguez A, Solinís MÁ, Avilés-Triqueros M, Weber BH, Fernández E, R. Gascón A, (2012) Dextran and protamine-based solid lipid nanoparticles as potential vectors for the treatment of X-linked juvenile retinoschisis. Hum Gene Ther 23:345–355
Deng S, Oka K (2020) Adeno-associated virus as gene delivery vehicle into the retina. Methods in Molecular Biology (clifton, NJ) 2092:77–90. https://doi.org/10.1007/978-1-0716-0175-4_7
Ding SLS, Koh AE, Kumar S, Ali Khan MS, Alzahrani B, Mok PL (2019) Genetically-modified human mesenchymal stem cells to express erythropoietin enhances differentiation into retinal photoreceptors: an in-vitro study. J Photochem Photobiol B 195:33–38. https://doi.org/10.1016/j.jphotobiol.2019.04.008
Ding Y, Carvalho E, Murphy C, McInerney V, Krawczyk J, O’Brien T, Howard L, Cai L, Shen S (2020) Derivation of familial iPSC lines from three patients with retinitis pigmentosa carrying an autosomal dominant RPE65 mutation (NUIGi027-A, NUIGi028-A, NUIGi029-A) Stem Cell Res 43:101665. https://doi.org/10.1016/j.scr.2019.101665
Domingo-Prim J, Riera M, Burés-Jelstrup A, Corcostegui B, Pomares E (2019) Establishment of an induced pluripotent stem cell line (FRIMOi005-A) derived from a retinitis pigmentosa patient carrying a dominant mutation in RHO gene Stem cell research 38. https://doi.org/10.1016/j.scr.2019.101468
Dufour VL, Cideciyan AV, Ye GJ, Song C, Timmers A, Habecker PL, Pan W, Weinstein NM, Swider M, Durham AC, Ying GS, Robinson PM, Jacobson SG, Knop DR, Chulay JD, Shearman MS, Aguirre GD, Beltran WA (2020) Toxicity and efficacy evaluation of an adeno-associated virus vector expressing codon-optimized RPGR delivered by subretinal injection in a canine model of X-linked retinitis pigmentosa. Hum Gene Ther 31:253–267. https://doi.org/10.1089/hum.2019.297
Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI (2006) Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE 1:e38. https://doi.org/10.1371/journal.pone.0000038
Ferguson LR, Balaiya S, Mynampati BK, Sambhav K, Chalam KV (2015) Deprivation of bFGF promotes spontaneous differentiation of human embryonic stem cells into retinal pigment epithelial cells. J Stem Cells 10:159–170
Florio M, Huttner WB (2014) Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141:2182–2194
Fukuda S, Nagano M, Yamashita T, Kimura K, Tsuboi I, Salazar G, Ueno S, Kondo M, Kunath T, Oshika T (2013) Functional endothelial progenitor cells selectively recruit neurovascular protective monocyte-derived F4/80+/Ly6c+ macrophages in a mouse model of retinal degeneration. Stem Cells 31:2149–2161
Gamm DM, Wang S, Lu B, Girman S, Holmes T, Bischoff N, Shearer RL, Sauvé Y, Capowski E, Svendsen CN (2007) Protection of visual functions by human neural progenitors in a rat model of retinal disease. PloS one 2:e338
Gearhart PM, Gearhart C, Thompson DA, Petersen-Jones SM (2010) Improvement of visual performance with intravitreal administration of 9-cis-retinal in Rpe65-mutant dogs. Arch Ophthalmol 128:1442–1448. https://doi.org/10.1001/archophthalmol.2010.210
Ghazi NG, Abboud EB, Nowilaty SR, Alkuraya H, Alhommadi A, Cai H, Hou R, Deng WT, Boye SL, Almaghamsi A, Al Saikhan F, Al-Dhibi H, Birch D, Chung C, Colak D, LaVail MM, Vollrath D, Erger K, Wang W, Conlon T, Zhang K, Hauswirth W, Alkuraya FS (2016) Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet 135:327–343. https://doi.org/10.1007/s00439-016-1637-y
Giacalone JC, Andorf JL, Zhang Q, Burnight ER, Ochoa D, Reutzel AJ, Collins MM, Sheffield VC, Mullins RF, Han IC, Stone EM, Tucker BA (2019) Development of a molecularly stable gene therapy vector for the treatment of RPGR-associated X-linked retinitis pigmentosa. Hum Gene Ther 30:967–974. https://doi.org/10.1089/hum.2018.244
Gregory-Evans K, Chang F, Hodges MD, Gregory-Evans CY (2009) Ex vivo gene therapy using intravitreal injection of GDNF-secreting mouse embryonic stem cells in a rat model of retinal degeneration
Gu S, Xing C, Han J, Tso MO, Hong J (2009) Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo
Hambright D, Park K-Y, Brooks M, McKay R, Swaroop A, Nasonkin IO (2012) Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina
Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:1
Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. The Lancet 368:1795–1809
He XY, Zhao CJ, Xu H, Chen K, Bian BS, Gong Y, Weng CH, Zeng YX, Fu Y, Liu Y, Yin ZQ (2021) Synaptic repair and vision restoration in advanced degenerating eyes by transplantation of retinal progenitor cells. Stem Cell Reports 16:1805–1817. https://doi.org/10.1016/j.stemcr.2021.06.002
He Y, Zhang Y, Liu X, Ghazaryan E, Li Y, Xie J, Su G (2014) Recent advances of stem cell therapy for retinitis pigmentosa. Int J Mol Sci 15:14456–14474
Health Quality O (2017) Retinal prosthesis system for advanced retinitis pigmentosa: a health technology assessment update. Ont Health Technol Assess Ser 17:1–62
Holan V, Palacka K, Hermankova B (2021) Mesenchymal stem cell-based therapy for retinal degenerative diseases: experimental models and clinical trials. Cells 10. https://doi.org/10.3390/cells10030588
Homma K, Okamoto S, Mandai M, Gotoh N, Rajasimha HK, Chang YS, Chen S, Li W, Cogliati T, Swaroop A (2013) Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors. Stem Cells 31:1149–1159
Huo SJ, Li Y, Raisman G, Yin ZQ (2011) Transplanted olfactory ensheathing cells reduce the gliotic injury response of Müller cells in a rat model of retinitis pigmentosa. Brain Res 1382:238–244
Huo SJ, Li YC, Xie J, Li Y, Raisman G, Zeng YX, He JR, Weng CH, Yin ZQ (2012) Transplanted olfactory ensheathing cells reduce retinal degeneration in royal college of surgeons rats. Curr Eye Res 37:749–758
Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408
Jian Q, Xu H, Xie H, Tian C, Zhao T, Yin Z (2009) Activation of retinal stem cells in the proliferating marginal region of RCS rats during development of retinitis pigmentosa. Neurosci Lett 465:41–44
Jin Z-B, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami Y, Iwata T, Takahashi M (2011) Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PloS one 6:e17084
Jin Z-B, Okamoto S, Xiang P, Takahashi M (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl Med 1:503–509
Johnson CJ, Berglin L, Chrenek MA, Redmond TM, Boatright JH, Nickerson JM (2008) Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol vis 14:2211–2226
Kachi S, Oshima Y, Esumi N, Kachi M, Rogers B, Zack DJ, Campochiaro PA (2005) Nonviral ocular gene transfer. Gene Ther 12:843–851. https://doi.org/10.1038/sj.gt.3302475
Kahraman NS, Oner A (2020) Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial. Int J Ophthalmol 13:1423–1429. https://doi.org/10.18240/ijo.2020.09.14
Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa S-I (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci 99:1580–1585
Kay CN, Ryals RC, Aslanidi GV, Min SH, Ruan Q, Sun J, Dyka FM, Kasuga D, Ayala AE, Van Vliet K, Agbandje-McKenna M, Hauswirth WW, Boye SL, Boye SE (2013) Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS ONE 8:e62097. https://doi.org/10.1371/journal.pone.0062097
Kenna PF, Humphries MM, Kiang AS, Brabet P, Guillou L, Ozaki E, Campbell M, Farrar GJ, Koenekoop R, Humphries P (2020) Advanced late-onset retinitis pigmentosa with dominant-acting D477G RPE65 mutation is responsive to oral synthetic retinoid therapy. BMJ Open Ophthalmology 5:e000462. https://doi.org/10.1136/bmjophth-2020-000462
Kicic A, Shen W-Y, Wilson AS, Constable IJ, Robertson T, Rakoczy PE (2003) Differentiation of marrow stromal cells into photoreceptors in the rat eye. J Neurosci 23:7742–7749
Li T, Lewallen M, Chen S, Yu W, Zhang N, Xie T (2013) Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells. Cell Res 23:788–802
Li XX, Yuan XJ, Zhai Y, Yu S, Jia RX, Yang LP, Ma ZZ, Zhao YM, Wang YX, Ge LH (2019) Treatment with stem cells from human exfoliated deciduous teeth and their derived conditioned medium improves retinal visual function and delays the degeneration of photoreceptors. Stem Cells Dev 28:1514–1526. https://doi.org/10.1089/scd.2019.0158
Li Y, Tsai Y-T, Hsu C-W, Erol D, Yang J, Wu W-H, Davis RJ, Egli D, Tsang SH (2012) Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 18:1312
Li YP, Deng WL, Jin ZB (2021) Modeling retinitis pigmentosa through patient-derived retinal organoids. STAR Protoc 2:100438. https://doi.org/10.1016/j.xpro.2021.100438
Li YP, Liu H, Jin ZB (2020) Generation of three human iPSC lines from a retinitis pigmentosa family with SLC7A14 mutation. Stem Cell Res 49:102075. https://doi.org/10.1016/j.scr.2020.102075
Li Z, Zeng Y, Chen X, Li Q, Wu W, Xue L, Xu H, Yin ZQ (2016) Neural stem cells transplanted to the subretinal space of rd1 mice delay retinal degeneration by suppressing microglia activation. Cytotherapy 18:771–784. https://doi.org/10.1016/j.jcyt.2016.03.001
Limoli PG, Limoli CSS, Morales MU, Vingolo EM (2020) Mesenchymal stem cell surgery, rescue and regeneration in retinitis pigmentosa: clinical and rehabilitative prognostic aspects. Restor Neurol Neurosci. https://doi.org/10.3233/rnn-190970
Liu X, Lillywhite J, Zhu W, Huang Z, Clark AM, Gosstola N, Maguire CT, Dykxhoorn D, Chen ZY, Yang J (2021) Generation and genetic correction of USH2A c.2299delG mutation in patient-derived induced pluripotent stem cells. Genes (Basel) 12. https://doi.org/10.3390/genes12060805
Liu Y, Chen SJ, Li SY, Qu LH, Meng XH, Wang Y, Xu HW, Liang ZQ, Yin ZQ (2017) Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther 8:209. https://doi.org/10.1186/s13287-017-0661-8
Lu B, Wang S, Girman S, McGill T, Ragaglia V, Lund R (2010) Human adult bone marrow-derived somatic cells rescue vision in a rodent model of retinal degeneration. Exp Eye Res 91:449–455
Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauve Y, Messina DJ, Harris IR, Kihm AJ, Harmon AM (2007) Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 25:602–611
Mahmoudian-Sani MR, Forouzanfar F, Asgharzade S, Ghorbani N (2019) Overexpression of MiR-183/96/182 triggers retina-like fate in human bone marrow-derived mesenchymal stem cells (hBMSCs) in culture. J Ophthalmol 2019. https://doi.org/10.1155/2019/2454362
Mangunsong C, Putera B, Haifa R, Suwandjaja M, Sharina A, Sasongko MB, Wirohadidjojo YW (2019) Safety issues of peribulbar injection of umbilical cord mesenchymal stem cell (UC-MSC) in patients with retinitis pigmentosa. Cytotherapy 21:S83. https://doi.org/10.1016/j.jcyt.2019.03.500
Mannino G, Russo C, Longo A, Anfuso CD, Lupo G, Lo Furno D, Giuffrida R, Giurdanella G (2021) Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases. World J Stem Cells 13:632–644. https://doi.org/10.4252/wjsc.v13.i6.632
Marshall C, Lu C, Winstead W, Zhang X, Xiao M, Harding G, Klueber K, Roisen FJ (2006) The therapeutic potential of human olfactory-derived stem cells
Matoba S, Zhang Y (2018) Somatic cell nuclear transfer reprogramming: mechanisms and applications cell. Stem Cell 23:471–485. https://doi.org/10.1016/j.stem.2018.06.018
McGill TJ, Osborne L, Lu B, Stoddard J, Huhn S, Tsukamoto A, Capela A (2019) Subretinal transplantation of human central nervous system stem cells stimulates controlled proliferation of endogenous retinal pigment epithelium. Translational Vision Sci Technol 8. https://doi.org/10.1167/tvst.8.3.43
Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang S-C, Gamm DM (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci 106:16698–16703
Mollick T, Mohlin C, Johansson K (2016) Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina. Brain Res 1646:522–534. https://doi.org/10.1016/j.brainres.2016.06.039
Moon SY, Zhang D, Chen SC, Lamey TM, Thompson JA, McLaren TL, De Roach JN, Chen FK, McLenachan S (2021) Generation of two induced pluripotent stem cell lines from a retinitis pigmentosa patient with compound heterozygous mutations in CRB1. Stem Cell Res 54:102403. https://doi.org/10.1016/j.scr.2021.102403
Musarella MA, Macdonald IM (2011) Current concepts in the treatment of retinitis pigmentosa. J Ophthalmol 2011:753547–753547. https://doi.org/10.1155/2011/753547
Nadri S, Kazemi B, Eeslaminejad MB, Yazdani S, Soleimani M (2013a) High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Mol Biol Rep 40:3883–3890
Nadri S, Yazdani S, Arefian E, Gohari Z, Eslaminejad MB, Kazemi B, Soleimani M (2013b) Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci Lett 541:43–48
Ng TK, Fortino VR, Pelaez D, Cheung HS (2014) Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J Stem Cells 6:111–119
Öner A (2018) Stem cell treatment in retinal diseases: recent developments. Turkish Journal of Ophthalmology 48:33–38. https://doi.org/10.4274/tjo.89972
Özmert E, Arslan U (2020) Management of retinitis pigmentosa by Wharton’s jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther 11:353. https://doi.org/10.1186/s13287-020-01870-w
Patrizi C, Llado M, Benati D, Iodice C, Marrocco E, Guarascio R, Surace EM, Cheetham ME, Auricchio A, Recchia A (2021) Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model. Am J Hum Genet 108:295–308. https://doi.org/10.1016/j.ajhg.2021.01.006
Peng Y, Zhang Y, Huang B, Luo Y, Zhang M, Li K, Li W, Wen W, Tang S (2014) Survival and migration of pre-induced adult human peripheral blood mononuclear cells in retinal degeneration slow (rds) mice three months after subretinal transplantation. Curr Stem Cell Res Ther 9:124–133
Petrs-Silva H, Linden R (2014) Advances in gene therapy technologies to treat retinitis pigmentosa. Clin Ophthalmol 8:e136
Prado DA, Acosta-Acero M, Maldonado RS (2020) Gene therapy beyond luxturna: a new horizon of the treatment for inherited retinal disease. Curr Opin Ophthalmol 31:147–154. https://doi.org/10.1097/icu.0000000000000660
Qiang S, Alsaeedi HA, Yuhong C, Yang H, Tong L, Kumar S, Higuchi A, Alarfaj AA, Munisvaradass R, Ling MP, Cheng P (2018) Morphological and genetical changes of endothelial progenitor cells after in-vitro conversion into photoreceptors. J Photochem Photobiol B 183:127–132. https://doi.org/10.1016/j.jphotobiol.2018.04.003
Qiu G, Seiler MJ, Mui C, Arai S, Aramant RB, de Juan E, Sadda S (2005) Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats. Exp Eye Res 80:515–525
Qu L, Gao L, Xu H, Duan P, Zeng Y, Liu Y, Yin ZQ (2017) Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci Rep 7. https://doi.org/10.1038/s41598-017-00241-5
Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ (2008) Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. American journal of ophthalmology 146:172–182. e171
Ramlogan-Steel CA, Murali A, Andrzejewski S, Dhungel B, Steel JC, Layton CJ (2019) Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: trials, future directions and safety considerations. Clin Exp Ophthalmol 47:521–536. https://doi.org/10.1111/ceo.13416
Ramsden CM, Powner MB, Carr A-JF, Smart MJ, da Cruz L, Coffey PJ (2013) Stem cells in retinal regeneration: past, present and future. Development 140:2576–2585
Riera M, Patel A, Corcostegui B, Chang S, Corneo B, Sparrow JR, Pomares E (2019a) Generation of an induced pluripotent stem cell line (FRIMOi002-A) from a retinitis pigmentosa patient carrying compound heterozygous mutations in USH2A gene. Stem Cell Res 35:101386. https://doi.org/10.1016/j.scr.2019.101386
Riera M, Patel A, Corcostegui B, Chang S, Sparrow JR, Pomares E, Corneo B (2019b) Establishment and characterization of an iPSC line (FRIMOi001-A) derived from a retinitis pigmentosa patient carrying PDE6A mutations. Stem Cell Res 35:101385. https://doi.org/10.1016/j.scr.2019.101385
Rowland TJ, Buchholz DE, Clegg DO (2012) Pluripotent human stem cells for the treatment of retinal disease. J Cell Physiol 227:457–466
Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, Wittes J, Pappas J, Elci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingfield L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390:849–860. https://doi.org/10.1016/s0140-6736(17)31868-8
Sanjurjo-Soriano C, Erkilic N, Manes G, Dubois G, Hamel CP, Meunier I, Kalatzis V (2018) Generation of an iPSC line, INMi001-A, carrying the two most common USH2A mutations from a compound heterozygote with non-syndromic retinitis pigmentosa. Stem Cell Res 33:228–232. https://doi.org/10.1016/j.scr.2018.11.004
Sarkar H, Méjécase C, Harding P, Eintracht J, Toualbi L, Cunha DL, Moosajee M (2021) Generation of two human iPSC lines from patients with autosomal dominant retinitis pigmentosa (UCLi014-A) and autosomal recessive Leber congenital amaurosis (UCLi015-A), associated with RDH12 variants. Stem Cell Res 54:102449. https://doi.org/10.1016/j.scr.2021.102449
Satarian L, Nourinia R, Safi S, Kanavi MR, Jarughi N, Daftarian N, Arab L, Aghdami N, Ahmadieh H, Baharvand H (2017) Intravitreal injection of bone marrow mesenchymal stem cells in patients with advanced retinitis pigmentosa; a safety study. J Ophthalmic vis Res 12:58–64. https://doi.org/10.4103/2008-322X.200164
Schallenberg M, Charalambous P, Thanos S (2012) GM-CSF protects rat photoreceptors from death by activating the SRC-dependent signalling and elevating anti-apoptotic factors and neurotrophins. Graefes Arch Clin Exp Ophthalmol 250:699–712. https://doi.org/10.1007/s00417-012-1932-9
Schatz A, Pach J, Gosheva M, Naycheva L, Willmann G, Wilhelm B, Peters T, Bartz-Schmidt KU, Zrenner E, Messias A, Gekeler F (2017) Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled follow-up study over 1 year. Invest Ophthalmol vis Sci 58:257–269. https://doi.org/10.1167/iovs.16-19906
Seiler MJ, Aramant RB (2012) Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 31:661–687
Semba R, Dagnelie G (2003) Are lutein and zeaxanthin conditionally essential nutrients for eye health? Med Hypotheses 61:465–472. https://doi.org/10.1016/S0306-9877(03)00198-1
Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S, Nakano T, Assawachananont J, Kimura T, Saito K, Terasaki H (2016) Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci 113:E81–E90
Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, Bush RA (2006) Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A 103:3896–3901. https://doi.org/10.1073/pnas.0600236103
Singh MS, Issa PC, Butler R, Martin C, Lipinski DM, Sekaran S, Barnard AR, MacLaren RE (2013) Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci 110:1101–1106
Singh RK, Winkler PA, Binette F, Petersen-Jones SM, Nasonkin IO (2021) Comparison of developmental dynamics in human fetal retina and human pluripotent stem cell-derived retinal tissue. Stem Cells Dev 30:399–417. https://doi.org/10.1089/scd.2020.0085
Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R (2011) Intravitreal injection of autologous bone marrow–derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina 31:1207–1214
Smith LE (2004) Bone marrow–derived stem cells preserve cone vision in retinitis pigmentosa. J Clin Investig 114:755–757
Soleimannejad M, Ebrahimi-Barough S, Nadri S, Riazi-Esfahani M, Soleimani M, Tavangar SM, Ai J (2017) Retina tissue engineering by conjunctiva mesenchymal stem cells encapsulated in fibrin gel: hypotheses on novel approach to retinal diseases treatment. Med Hypotheses 101:75–77. https://doi.org/10.1016/j.mehy.2017.02.019
Song C, Conlon TJ, Deng WT, Coleman KE, Zhu P, Plummer C, Mandapati S, Van Hoosear M, Green KB, Sonnentag P, Sharma AK, Timmers A, Robinson PM, Knop DR, Hauswirth WW, Chulay JD, Shearman MS, Ye GJ (2018) Toxicology and pharmacology of an AAV vector expressing codon-optimized RPGR in RPGR-deficient Rd9 mice. Hum Gene Ther Clin Dev 29:188–197. https://doi.org/10.1089/humc.2018.168
Souied EH, Reid SN, Piri NI, Lerner LE, Nusinowitz S, Farber DB (2008) Non-invasive gene transfer by iontophoresis for therapy of an inherited retinal degeneration. Exp Eye Res 87:168–175. https://doi.org/10.1016/j.exer.2008.04.009
Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, Groppe M, Jackson TL, MacLaren RE, Koitschev A, Kusnyerik A, Neffendorf J, Nemeth J, Naeem MAN, Peters T, Ramsden JD, Sachs H, Simpson A, Singh MS, Wilhelm B, Wong D, Zrenner E (2015) Subretinal visual implant alpha IMS – clinical trial interim report. Vision Res 111:149–160. https://doi.org/10.1016/j.visres.2015.03.001
Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp Neurol 148:135–146
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024
Takahashi VKL, Takiuti JT, Jauregui R, Tsang SH (2018) Gene therapy in inherited retinal degenerative diseases, a review. Ophthalmic Genet 39:560–568. https://doi.org/10.1080/13816810.2018.1495745
Tang X, Chen Z, Tan X, Luo L, Liu X, Gong L, Li DW, Liu Y (2020a) Generation of a homozygous CRISPR/Cas9-mediated knockout H9 hESC subline for the CRB1 locus. Stem Cell Res 49:102057. https://doi.org/10.1016/j.scr.2020.102057
Tang X, Liu X, Chen Z, Luo L, Liu X, Deng J, Li DWC, Liu Y (2020b) Using inducible lentiviral vectors to generate induced pluripotent stem cell line ZOCi001-A from peripheral blood cells of a patient with CRB1−/− retinitis pigmentosa. Stem Cell Res 45. https://doi.org/10.1016/j.scr.2020.101817
Tang Z, Zhang Y, Wang Y, Zhang D, Shen B, Luo M, Gu P (2017) Progress of stem/progenitor cell-based therapy for retinal degeneration. J Transl Med 15. https://doi.org/10.1186/s12967-017-1183-y
Tao W, Wen R, Goddard MB, Sherman SD, O’Rourke PJ, Stabila PF, Bell WJ, Dean BJ, Kauper KA, Budz VA (2002) Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol vis Sci 43:3292–3298
Telias M, Denlinger B, Helft Z, Thornton C, Beckwith-Cohen B, Kramer RH (2019) Retinoic acid induces hyperactivity, and blocking its receptor unmasks light responses and augments vision in retinal degeneration. Neuron 102:574-586.e575. https://doi.org/10.1016/j.neuron.2019.02.015
Terrell D, Comander J (2019) Current stem-cell approaches for the treatment of inherited retinal degenerations. Semin Ophthalmol 34:287–292. https://doi.org/10.1080/08820538.2019.1620808
Tu HY, Watanabe T, Shirai H, Yamasaki S, Kinoshita M, Matsushita K, Hashiguchi T, Onoe H, Matsuyama T, Kuwahara A, Kishino A, Kimura T, Eiraku M, Suzuma K, Kitaoka T, Takahashi M, Mandai M (2019) Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine 39:562–574. https://doi.org/10.1016/j.ebiom.2018.11.028
Tucker BA, Mullins RF, Streb LM, Anfinson K, Eyestone ME, Kaalberg E, Riker MJ, Drack AV, Braun TA, Stone EM (2013) Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. Elife 2:e00824
Tuekprakhon A, Sangkitporn S, Trinavarat A, Pawestri AR, Vamvanij V, Ruangchainikom M, Luksanapruksa P, Pongpaksupasin P, Khorchai A, Dambua A, Boonchu P, Yodtup C, Uiprasertkul M, Sangkitporn S, Atchaneeyasakul LO (2021) Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Res Ther 12:52. https://doi.org/10.1186/s13287-020-02122-7
Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, Levkovitch-Verbin H, Barshack I, Rosner M, Rotenstreich Y (2014) Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res 118:135–144
Uy H, Chan PS, Cruz FM (2013) Stem cell therapy: a novel approach for vision restoration in retinitis pigmentosa. Medical Hypothesis, Discovery & Innovation Ophthalmology Journal 2:52
Vandenberghe L, Auricchio A (2012) Novel adeno-associated viral vectors for retinal gene therapy. Gene Ther 19:162–168
Wang N-K, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai C-C, Chien C-L (2010a) Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 89:911
Wang S, Girman S, Lu B, Bischoff N, Holmes T, Shearer R, Wright LS, Svendsen CN, Gamm DM, Lund RD (2008) Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration. Invest Ophthalmol vis Sci 49:3201–3206
Wang S, Lu B, Girman S, Duan J, McFarland T, Zhang Q-s, Grompe M, Adamus G, Appukuttan B, Lund R (2010b) Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology. PloS one 5:e9200
Warfvinge K, Kiilgaard JF, Lavik EB, Scherfig E, Langer R, Klassen HJ, Young MJ (2005) Retinal progenitor cell xenografts to the pig retina: morphologic integration and cytochemical differentiation. Arch Ophthalmol 123:1385–1393
Weiss JN, Levy S (2018) Stem cell ophthalmology treatment study: bone marrow derived stem cells in the treatment of retinitis pigmentosa. Stem Cell Invest 5. https://doi.org/10.21037/sci.2018.04.02
Weiss JN, Levy S (2019) Stem cell Ophthalmology Treatment Study (SCOTS): bone marrow derived stem cells in the treatment of Usher syndrome. Stem Cell Invest 6. https://doi.org/10.21037/sci.2019.08.07
Wheaton DH, Hoffman DR, Locke KG, Watkins RB, Birch DG (2003) Biological safety assessment of docosahexaenoic acid supplementation in a randomized clinical trial for X-linked retinitis pigmentosa. Arch Ophthalmol 121:1269–1278
Xie J, Huo S, Li Y, Dai J, Xu H, Yin ZQ (2017) Olfactory ensheathing cells inhibit gliosis in retinal degeneration by downregulation of the müller cell notch signaling pathway. Cell Transplant 26:967–982. https://doi.org/10.3727/096368917X694994
Xie J, Li Y, Dai J, He Y, Sun D, Dai C, Xu H, Yin ZQ (2019) Olfactory ensheathing cells grafted into the retina of RCS rats suppress inflammation by down-regulating the JAK/STAT pathway. Front Cell Neurosci 13:341. https://doi.org/10.3389/fncel.2019.00341
Xue L, Zeng Y, Li Q, Li Y, Li Z, Xu H, Yin Z (2017) Transplanted Olfactory Ensheathing Cells Restore Retinal Function in a Rat Model of Light-Induced Retinal Damage by Inhibiting Oxidative Stress Oncotarget 8:93087–93102. https://doi.org/10.18632/oncotarget.21857
Yamasaki S, Sugita S, Horiuchi M, Masuda T, Fujii S, Makabe K, Kawasaki A, Hayashi T, Kuwahara A, Kishino A, Kimura T, Takahashi M, Mandai M (2021) Low immunogenicity and immunosuppressive properties of human ESC- and iPSC-derived retinas. Stem Cell Reports 16:851–867. https://doi.org/10.1016/j.stemcr.2021.02.021
Yanai A, Laver C, Joe AW, Gregory-Evans K (2016) Efficient production of photoreceptor precursor cells from human embryonic stem cells. Human Embryonic Stem Cell Protocols 357–369
Yang J, Xie M, Zheng W, Hu J, Qu Q (2016) Therapeutical effect of growth-associated protein 43 (GAP43) gene-modified bone marrow mesenchymal stem cell transplantation on rat retinal degenerative diseases. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 32:1041–1044
Yoshida T, Ozawa Y, Suzuki K, Yuki K, Ohyama M, Akamatsu W, Matsuzaki Y, Shimmura S, Mitani K, Tsubota K (2014) The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Mol Brain 7:1
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920
Zerti D, Dorgau B, Felemban M, Ghareeb AE, Yu M, Ding Y, Krasnogor N, Lako M (2020) Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell-derived retinal organoids. Stem Cells (dayton, Ohio) 38:45–51. https://doi.org/10.1002/stem.3082
Zhai W, Gao L, Qu L, Li Y, Zeng Y, Li Q, Xu H, Yin ZQ (2020) Combined transplantation of olfactory ensheathing cells with rat neural stem cells enhanced the therapeutic effect in the retina of RCS rats. Front Cell Neurosci 14:52. https://doi.org/10.3389/fncel.2020.00052
Zhao T, Liang Q, Meng X, Duan P, Wang F, Li S, Liu Y, Yin ZQ (2020) Intravenous infusion of umbilical cord mesenchymal stem cells maintains and partially improves visual function in patients with advanced retinitis pigmentosa. Stem Cells Dev 29:1029–1037. https://doi.org/10.1089/scd.2020.0037
Zhao X, Das AV, Bhattacharya S, Thoreson WB, Sierra JR, Mallya KB, Ahmad I (2008) Derivation of neurons with functional properties from adult limbal epithelium: implications in autologous cell therapy for photoreceptor degeneration. Stem Cells 26:939–949
Zhao Y, Feng K, Liu R, Pan J, Zhang L, Lu X (2019) Vitamins and mineral supplements for retinitis pigmentosa. Journal of Ophthalmology 2019:8524607. https://doi.org/10.1155/2019/8524607
Zhou Y, Ding C, Xia S, Jing Y, Mao S, Liu J, Chen J, Chan HF, Tang S, Chen J (2020) Establishment of induced pluripotent stem cell line CSUASOi003- a from an autosomal recessive retinitis pigmentosa patient carrying compound heterozygous mutations in CRB1 gene. Stem Cell Res 44:101742. https://doi.org/10.1016/j.scr.2020.101742
Zhu D, Xie M, Gademann F, Cao J, Wang P, Guo Y, Zhang L, Su T, Zhang J, Chen J (2020) Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease. Stem Cell Res Ther 11:98. https://doi.org/10.1186/s13287-020-01608-8
Zhu J, Cifuentes H, Reynolds J, Lamba DA (2017) Immunosuppression via loss of IL2rγ enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina cell. Stem Cell 20:374-384.e375. https://doi.org/10.1016/j.stem.2016.11.019
Acknowledgements
The authors would like to appreciate Dr. Shamoei Wang and Dr. Robert MacLaren for their kind cooperation as the expert reviewer.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical approval
The study did not include any human or animal subject, so ethical was not required. All the reviewed literature was properly cited in the manuscript.
Informed consent
The study did not include any human or animal subject, so informed consent was not required.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hosseini Shabanan, S., Seyedmirzaei, H., Barnea, A. et al. Stem cell transplantation as a progressing treatment for retinitis pigmentosa. Cell Tissue Res 387, 177–205 (2022). https://doi.org/10.1007/s00441-021-03551-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00441-021-03551-3