[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Preparation, characterization, and evaluation of eosin B–loaded nano-liposomes for growth inhibition of Plasmodium falciparum

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Malaria is a deadly disease in humans caused by the Plasmodium parasite. High prevalence of malaria and resistance of malaria parasite to currently proposed drugs have increased the need to introduce and use new and effective antimalarial agents. In this study, eosin B was used as an effective antimalarial agent, the efficacy of which has already been confirmed by in vitro models. Also, for efficacy and safety improvement of eosin B, liposomal nanocarrier was used because of diversity and adaptability in controlled drug delivery and targeting. Eosin B was trapped inside liposomal nanocarriers by thin layer hydration method and its optimization was performed based on size, polydispersity index, and drug entrapment efficiency. Finally, the eosin B–loaded liposomes were tested on Plasmodium falciparum in culture to evaluate its anti-plasmodial effect. According to the results, the formulation with DSPC:cholesterol 8:1 (molar ratio) and drug concentration of 3 mg/ml was selected as the optimal form. The optimal nano-liposomes showed a size of 163.3 nm, a polydispersity index of 0.250, and an encapsulation efficiency of 69.94%. The process of drug release from nanocarriers was also obtained about 63% at the end of 72 h. Stability studies over 2 months at 25 °C and 4 °C on the optimum sample showed that the samples stored in the refrigerator were more stable in terms of size characteristics, polydispersity index, and drug entrapment efficiency. The results indicate a greater effect of liposomal-formulated eosin B on inhibiting parasite growth compared to the free eosin B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data that were analyzed during this study are included in this published article. The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy restrictions.

References

  • Akbarzadeh I, Saremi Poor A, Yaghmaei S, Norouzian D, Noorbazargan H, Saffar S et al (2020a) Niosomal delivery of simvastatin to MDA-MB-231 cancer cells. Drug Dev Ind Pharm 46(9):1535–1549

    Article  CAS  PubMed  Google Scholar 

  • Akbarzadeh I, Yaraki MT, Ahmadi S, Chiani M, Nourouzian D (2020b) Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: an in-vitro investigation. Adv Powder Technol 31(9):4064–4071

    Article  CAS  Google Scholar 

  • Akbarzadeh I, Yaraki MT, Bourbour M, Noorbazargan H, Lajevardi A, Shilsar SMS et al (2020c) Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: an in-vitro investigation. J Drug Deliv Sci Technol 57:101715

    Article  CAS  Google Scholar 

  • Akbarzadeh I, Keramati M, Azadi A, Afzali E, Shahbazi R, Norouzian D et al (2021a) Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus. Chem Phys Lipids 234:105019

    Article  CAS  PubMed  Google Scholar 

  • Akbarzadeh I, Shayan M, Bourbour M, Moghtaderi M, Noorbazargan H, Eshrati Yeganeh F et al (2021b) Preparation, optimization and in-vitro evaluation of curcumin-loaded niosome@ calcium alginate nanocarrier as a new approach for breast cancer treatment. Biology. 10(3):173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antony HA, Parija SC (2016) Antimalarial drug resistance: an overview. Tropic Parasitol 6(1):30

    Article  CAS  Google Scholar 

  • Author (2017) Malaria. Nat Rev Dis Primers 3(1):17051

    Article  Google Scholar 

  • Banerjee A, De M, Ali N (2008) Complete cure of experimental visceral leishmaniasis with amphotericin B in stearylamine-bearing cationic liposomes involves down-regulation of IL-10 and favorable T cell responses. J Immunol 181(2):1386–1398

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj S, Rathore SS, Ghosh PC (2006) Enhancement of the cytotoxicity of liposomal ricin by the carboxylic ionophore monensin and the lysosomotropic amine NH4Cl in Chinese hamster ovary cells. Int J Toxicol 25(5):349–359

    Article  CAS  PubMed  Google Scholar 

  • Boran G, Tavakoli S, Dierking I, Kamali AR, Ege D (2020) Synergistic effect of graphene oxide and zoledronic acid for osteoporosis and cancer treatment. Sci Rep 10(1):1–12

    Article  Google Scholar 

  • Borgheti-Cardoso LN, San Anselmo M, Lantero E, Lancelot A, Serrano JL, Hernández-Ainsa S et al (2020) Promising nanomaterials in the fight against malaria. J Mater Chem 8(41):9428–9448

    Google Scholar 

  • Chapman H, Jeffers T, Williams R (2010) Forty years of monensin for the control of coccidiosis in poultry. Poult Sci 89(9):1788–1801

    Article  CAS  PubMed  Google Scholar 

  • Clerc S, Barenholz Y (1995) Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim Biophys Acta 1240(2):257–265

    Article  PubMed  Google Scholar 

  • Cowman A, Healer J, Marapana D, Marsh K (2016) Malaria: biology and disease. Cell. 167(3):610

    Article  CAS  PubMed  Google Scholar 

  • Davahli MR, Karwowski W, Taiar R (2020) A system dynamics simulation applied to healthcare: a systematic review. Int J Environ Res Public Health 17(16):5741

    Article  PubMed Central  Google Scholar 

  • Dey T, Anam K, Afrin F, Ali N (2000) Antileishmanial activities of stearylamine-bearing liposomes. Antimicrob Agents Chemother 44(6):1739–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraley R, Straubinger RM, Rule G, Springer EL, Papahadjopoulos D (1981) Liposome-mediated delivery of deoxyribonucleic acid to cells: enhanced efficiency of delivery by changes in lipid composition and incubation conditions. Biochemistry. 20(24):6978–6987

    Article  CAS  PubMed  Google Scholar 

  • Fumakia M, Ho EA (2016) Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol Pharm 13(7):2318–2331

    Article  CAS  PubMed  Google Scholar 

  • Ghafelehbashi R, Akbarzadeh I, Yaraki MT, Lajevardi A, Fatemizadeh M, Saremi LH (2019) Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int J Pharm 569:118580

    Article  CAS  PubMed  Google Scholar 

  • Gregoriadis G, Senior J (1980) The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation. FEBS Lett 119(1):43–46

    Article  CAS  PubMed  Google Scholar 

  • Gulati M, Grover M, Singh S, Singh M (1998) Lipophilic drug derivatives in liposomes. Int J Pharm 165(2):129–168

    Article  CAS  Google Scholar 

  • Has C, Sunthar P (2020) A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 30(4):336–365

    Article  CAS  PubMed  Google Scholar 

  • Hedayati CM, Abolhassani Targhi A, Shamsi F, Heidari F, Salehi Moghadam Z, Mirzaie A et al (2020) Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa. J Biomed Mater Res A 109(6):966–980

    Article  Google Scholar 

  • Heidari F, Akbarzadeh I, Nourouzian D, Mirzaie A, Bakhshandeh H (2020) Optimization and characterization of tannic acid loaded niosomes for enhanced antibacterial and anti-biofilm activities. Adv Powder Technol 31(12):4769–4781

    Article  Google Scholar 

  • Hironaka K, Inokuchi Y, Tozuka Y, Shimazawa M, Hara H, Takeuchi H (2009) Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J Control Release 136(3):247–253

    Article  CAS  PubMed  Google Scholar 

  • Hironaka K, Inokuchi Y, Fujisawa T, Shimazaki H, Akane M, Tozuka Y et al (2011) Edaravone-loaded liposomes for retinal protection against oxidative stress-induced retinal damage. Eur J Pharm Biopharm 79(1):119–125

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim S, Tagami T, Ozeki T (2017) Effective-loading of platinum–chloroquine into PEGylated neutral and cationic liposomes as a drug delivery system for resistant malaria parasites. Biol Pharm Bull 40(6):815–823

    Article  CAS  PubMed  Google Scholar 

  • Khazaeli P, Pardakhty A, Shoorabi H (2007) Caffeine-loaded niosomes: characterization and in vitro release studies. Drug Deliv 14(7):447–452

    Article  CAS  PubMed  Google Scholar 

  • Kirby C, Clarke J, Gregoriadis G (1980) Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum. FEBS Lett 111(2):324–328

    Article  CAS  PubMed  Google Scholar 

  • Lee K-D, Hong K, Papahadjopoulos D (1992) Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta 1103(2):185–197

    Article  CAS  PubMed  Google Scholar 

  • Lee KD, Nir S, Papahadjopoulos D (1993) Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry. 32(3):889–899

    Article  CAS  PubMed  Google Scholar 

  • Mahdavi M, Choubdar H, Zabeh E, Rieder M, Safavi-Naeini S, Khanlarzadeh V, et al. Early detection of COVID-19 mortality risk using non-invasive clinical characteristics. 2020.

    Book  Google Scholar 

  • Marques J, Valle-Delgado JJ, Urbán P, Baró E, Prohens R, Mayor A et al (2017) Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine 13(2):515–525

    Article  CAS  PubMed  Google Scholar 

  • Martí Coma-Cros E, Biosca A, Lantero E, Manca M, Caddeo C, Gutiérrez L et al (2018) Antimalarial activity of orally administered curcumin incorporated in Eudragit®-containing liposomes. Int J Mol Sci 19(5):1361

    Article  PubMed Central  Google Scholar 

  • Mirzaie A, Peirovi N, Akbarzadeh I, Moghtaderi M, Heidari F, Yeganeh FE et al (2020) Preparation and optimization of ciprofloxacin encapsulated niosomes: a new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorg Chem 103:104231

    Article  CAS  PubMed  Google Scholar 

  • Moghassemi S, Parnian E, Hakamivala A, Darzianiazizi M, Vardanjani MM, Kashanian S et al (2015) Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes. Mater Sci Eng C 46:333–340

    Article  CAS  Google Scholar 

  • Moles E, Galiano S, Gomes A, Quiliano M, Teixeira C, Aldana I et al (2017) ImmunoPEGliposomes for the targeted delivery of novel lipophilic drugs to red blood cells in a falciparum malaria murine model. Biomaterials. 145:178–191

    Article  CAS  PubMed  Google Scholar 

  • Noda K, Yoshimoto M, Hatano S, Watanabe T (1985) Effect of coal tar dyes on oxygen uptake in mitochondria isolated from rat liver. Food Hygien Safet Sci 26(2):203–207_1

    Article  CAS  Google Scholar 

  • Patra S, Singh M, Wasnik K, Pareek D, Gupta PS, Mukherjee S et al (2021) Polymeric nanoparticle based diagnosis and nanomedicine for treatment and development of vaccines for cerebral malaria: a review on recent advancement. ACS Appl Bio Mater 4(10):7342–7365

    Article  CAS  Google Scholar 

  • Rahman K, Khan SU, Fahad S, Chang MX, Abbas A, Khan WU et al (2019) Nano-biotechnology: a new approach to treat and prevent malaria. Int J Nanomedicine 14:1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran V, Rohra S, Raza M, Hasan GM, Dutt S, Ghosh PC (2016) Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob Agents Chemother 60(3):1304–1318

    Article  CAS  PubMed Central  Google Scholar 

  • Rashidzadeh H, Tabatabaei Rezaei SJ, Adyani SM, Abazari M, Rahamooz Haghighi S, Abdollahi H et al (2021) Recent advances in targeting malaria with nanotechnology-based drug carriers. Pharm Dev Technol 26(8):807–823

    Article  CAS  PubMed  Google Scholar 

  • Rathore SS, Ghosh PC (2008) Effect of surface charge and density of distearylphosphatidylethanolamine-mPEG-2000 (DSPE-mPEG-2000) on the cytotoxicity of liposome-entrapped ricin: Effect of lysosomotropic agents. Int J Pharm 350(1-2):79–94

    Article  CAS  PubMed  Google Scholar 

  • Raza M, Bharti H, Singal A, Nag A, Ghosh PC (2018) Long circulatory liposomal maduramicin inhibits the growth of Plasmodium falciparum blood stages in culture and cures murine models of experimental malaria. Nanoscale. 10(28):13773–13791

    Article  CAS  PubMed  Google Scholar 

  • Ridley RG (2002) Medical need, scientific opportunity and the drive for antimalarial drugs. Nature. 415(6872):686–693

    Article  CAS  PubMed  Google Scholar 

  • Roy B, Guha P, Bhattarai R, Nahak P, Karmakar G, Chettri P et al (2016) Influence of lipid composition, pH, and temperature on physicochemical properties of liposomes with curcumin as model drug. J Oleo Sci 65(5):399–411

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi Tafreshi A, Zamani Z, Sabbaghian M, Khavari-Nejad RA, Arjmand M (2021) A comparative in vitro study of the effect of eosin B on asexual blood stages and gametocyte of Plasmodium falciparum. Iran J Med Microbiol 15(2):173–188

    Article  Google Scholar 

  • Sadeghi S, Ehsani P, Cohan RA, Sardari S, Akbarzadeh I, Bakhshandeh H et al (2020) Design and physicochemical characterization of lysozyme loaded niosomal formulations as a new controlled delivery system. Pharm Chem J 53(10):921–930

    Article  CAS  Google Scholar 

  • Sharma D, Ali AAE, Trivedi LR (2021) An updated review on: liposomes as drug delivery system. Pharma News 6(2):60–62

    Google Scholar 

  • Shirzad M, Jamehbozorgi S, Akbarzadeh I, Aghabozorg HR, Amini A (2019) The role of polyethylene glycol size in chemical spectra, cytotoxicity, and release of PEGylated nanoliposomal cisplatin. Assay Drug Dev Technol 17(5):231–239

    Article  CAS  PubMed  Google Scholar 

  • Stevens DM, Crist RM, Stern STJM (2021) Nanomedicine reformulation of chloroquine and hydroxychloroquine. Molecules 26(1):175

    Article  CAS  Google Scholar 

  • Tayyab Ansari M, Saeed Saify Z, Sultana N, Ahmad I, Saeed-Ul-Hassan S, Tariq I et al (2013) Malaria and artemisinin derivatives: an updated review. Mini-Rev Med Chem 13(13):1879–1902

    Article  Google Scholar 

  • Tiwari S, Goyal AK, Mishra N, Khatri K, Vaidya B, Mehta A et al (2009) Development and characterization of novel carrier gel core liposomes based transmission blocking malaria vaccine. J Control Release 140(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172(1-2):33–70

    Article  CAS  Google Scholar 

  • Verma S, Singh S, Syan N, Mathur P, Valecha V (2010) Nanoparticle vesicular systems: a versatile tool for drug delivery. J Chem Pharm Res 2(2):496–509

    CAS  Google Scholar 

  • Weers J (2019) Lipid-based compositions of antiinfectives for treating pulmonary infections and methods of use thereof. Google Patents 8:226

    Google Scholar 

  • Zucker D, Marcus D, Barenholz Y, Goldblum A (2009) Liposome drugs’ loading efficiency: a working model based on loading conditions and drug’s physicochemical properties. J Control Release 139(1):73–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Islamic Azad University, Tehran North Branch, and Pasteur of Iran for providing the necessary laboratory facilities for this study.

Author information

Authors and Affiliations

Authors

Contributions

H.B. and Z.Z. developed the idea and designed the experiments. M.N. conducted the experiments. M.N., M.M., and M.A. analyzed the data. M.N. wrote the manuscript. All authors confirmed the final manuscript before the submission.

Corresponding authors

Correspondence to Haleh Bakhshandeh or Zahra Zamani.

Ethics declarations

Ethics approval and consent to participate

There are no “human subjects” in this study. Also, the manuscript does not contain experiments using animals.

Competing interests

The authors declare no competing interests.

Additional information

Section Editor: Tobili Sam-Yellowe

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafzadeh, M., Bakhshandeh, H., Zamani, Z. et al. Preparation, characterization, and evaluation of eosin B–loaded nano-liposomes for growth inhibition of Plasmodium falciparum. Parasitol Res 121, 383–393 (2022). https://doi.org/10.1007/s00436-021-07395-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-021-07395-2

Keywords

Navigation