[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Complexin I knockout rats exhibit a complex neurobehavioral phenotype including profound ataxia and marked deficits in lifespan

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Complexin I (CPLX1), a presynaptic small molecule protein, forms SNARE complex in the central nervous system involved in the anchoring, pre-excitation, and fusion of axonal end vesicles. Abnormal expression of CPLX1 occurs in several neurodegenerative and psychiatric disorders that exhibit disrupted neurobehaviors. CPLX1 gene knockout induces severe ataxia and social behavioral deficits in mice, which has been poorly demonstrated. Here, to address the limitations of single-species models and to provide translational insights relevant to human diseases, we used CPLX1 knockout rats to further explore the function of the CPLX1 gene. The CRISPR/Cas9 gene editing system was adopted to generate CPLX1 knockout rats (CPLX1−/−). Then, we characterized the survival rate and behavioral phenotype of CPLX1−/− rats using behavioral analysis. To further explain this phenomenon, we performed blood glucose testing, Nissl staining, hematoxylin-eosin staining, and Golgi staining. We found that CPLX1−/− rats showed profound ataxia, dystonia, movement and exploratory deficits, and increased anxiety and sensory deficits but had normal cognitive function. Nevertheless, CPLX1−/− rats could swim without training. The abnormal histomorphology of the stomach and intestine were related to decreased weight and early death in these rats. Decreased dendritic branching was also found in spinal motor neurons in CPLX1−/− rats. In conclusion, CPLX1 gene knockout induced the abnormal histomorphology of the stomach and intestine and decreased dendritic branching in spinal motor neurons, causing different phenotypes between CPLX1−/− rats and mice, even though both of these phenotypes showed profound ataxia. These findings provide a new perspective for understanding the role of CPLX1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abderrahmani A, Niederhauser G, Plaisance V, Roehrich ME, Lenain V, Coppola T, Regazzi R, Waeber G (2004) Complexin I regulates glucose-induced secretion in pancreatic beta-cells. J Cell Sci 117:2239–2247. https://doi.org/10.1242/jcs.01041

    Article  CAS  PubMed  Google Scholar 

  2. Andoh T, Kishi H, Motoki K, Nakanishi K, Kuraishi Y, Muraguchi A (2008) Protective effect of IL-18 on kainate- and IL-1 beta-induced cerebellar ataxia in mice. J Immunol 180:2322–2328

    Article  CAS  Google Scholar 

  3. Babai N, Sendelbeck A, Regus-Leidig H, Fuchs M, Mertins J, Reim K, Brose N, Feigenspan A, Brandstatter JH (2016) Functional roles of Complexin 3 and Complexin 4 at mouse photoreceptor ribbon synapses. J Neurosci 36:6651–6667. https://doi.org/10.1523/jneurosci.4335-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brose N (2008) For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic 9:1403–1413. https://doi.org/10.1111/j.1600-0854.2008.00758.x

    Article  CAS  PubMed  Google Scholar 

  5. Butt SJB, Kiehn O (2003) Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–963. https://doi.org/10.1016/S0896-6273(03)00353-2

    Article  CAS  PubMed  Google Scholar 

  6. Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. J Neurosci 19:3248–3257

    Article  CAS  Google Scholar 

  7. Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M, Sudhof TC, Rizo J (2002) Three-dimensional structure of the complexin/SNARE complex. Neuron 33:397–409

    Article  CAS  Google Scholar 

  8. Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835:18–26. https://doi.org/10.1016/S0006-8993(98)01258-X

    Article  CAS  PubMed  Google Scholar 

  9. Drew CJ, Kyd RJ, Morton AJ (2007) Complexin I knockout mice exhibit marked deficits in social behaviours but appear to be cognitively normal. Hum Mol Genet 16:2288–2305. https://doi.org/10.1093/hmg/ddm181

    Article  CAS  PubMed  Google Scholar 

  10. Eastwood SL, Harrison PJ (2000) Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 5:425–432

    Article  CAS  Google Scholar 

  11. Egbujo CN, Sinclair D, Hahn CG (2016) Dysregulations of synaptic vesicle trafficking in schizophrenia. Curr Psychiatry Rep 18:77. https://doi.org/10.1007/s11920-016-0710-5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Enginar N, Nurten A, Turkmen AZ, Cagla B (2015) Scopolamine-induced convulsions in fasted animals after food intake: sensitivity of C57BL/6J mice and Sprague-Dawley rats. Epilepsy Res 112:150–153. https://doi.org/10.1016/j.eplepsyres.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  13. Figueroa KP, Paul S, Cali T, Lopreiato R, Karan S, Frizzarin M, Ames D, Zanni G, Brini M, Dansithong W, Milash B, Scoles DR, Carafoli E, Pulst SM (2016) Spontaneous shaker rat mutant - a new model for X-linked tremor/ataxia. Dis Model Mech 9:553–562. https://doi.org/10.1242/dmm.022848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Freeman W, Morton AJ (2004) Regional and progressive changes in brain expression of complexin II in a mouse transgenic for the Huntington's disease mutation. Brain Res Bull 63:45–55. https://doi.org/10.1016/j.brainresbull.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  15. Giraudo CG, Garcia-Diaz A, Eng WS, Chen Y, Hendrickson WA, Melia TJ, Rothman JE (2009) Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323:512–516. https://doi.org/10.1126/science.1166500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glynn D, Bortnick RA, Morton AJ (2003) Complexin II is essential for normal neurological function in mice. Hum Mol Genet 12:2431–2448. https://doi.org/10.1093/hmg/ddg249

    Article  CAS  PubMed  Google Scholar 

  17. Glynn D, Drew CJ, Reim K, Brose N, Morton AJ (2005) Profound ataxia in complexin I knockout mice masks a complex phenotype that includes exploratory and habituation deficits. Hum Mol Genet 14:2369–2385. https://doi.org/10.1093/hmg/ddi239

    Article  CAS  PubMed  Google Scholar 

  18. Glynn D, Sizemore RJ, Morton AJ (2007) Early motor development is abnormal in complexin I knockout mice. Neurobiol Dis 25:483–495. https://doi.org/10.1016/j.nbd.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  19. Halberda JP, Middaugh LD, Gard BE, Jackson BP (1997) DAD1- and DAD2-like agonist effects on motor activity of C57 mice: differences compared to rats. Synapse 26:81–92. https://doi.org/10.1002/(sici)1098-2396(199705)26:1<81::aid-syn9>3.0.co;2-a

    Article  CAS  PubMed  Google Scholar 

  20. Hazell AS, Wang C (2005) Downregulation of complexin I and complexin II in the medial thalamus is blocked by N-acetylcysteine in experimental Wernicke's encephalopathy. J Neurosci Res 79:200–207. https://doi.org/10.1002/jnr.20278

    Article  CAS  PubMed  Google Scholar 

  21. Hou JC, Min L, Pessin JE (2009) Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm 80:473–506. https://doi.org/10.1016/s0083-6729(08)00616-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoxha E, Balbo I, Miniaci MC, Tempia F (2018) Purkinje cell signaling deficits in animal models of ataxia. Front Synaptic Neurosci 10:6. https://doi.org/10.3389/fnsyn.2018.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jayadev S, Bird TD (2013) Hereditary ataxias: overview. Genet Med 15:673–683. https://doi.org/10.1038/gim.2013.28

    Article  CAS  PubMed  Google Scholar 

  24. Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ (2004) Comparative recombination rates in the rat, mouse, and human genomes. Genome Res 14:528–538. https://doi.org/10.1101/gr.1970304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jin L, Ding YC, Zhang Y, Xu XQ, Cao Q (2016) A novel pH-enzyme-dependent mesalamine colon-specific delivery system. Drug Des Dev Ther 10:2021–2028. https://doi.org/10.2147/dddt.s107283

    Article  CAS  Google Scholar 

  26. Kelp A, Koeppen AH, Petrasch-Parwez E, Calaminus C, Bauer C, Portal E, Yu-Taeger L, Pichler B, Bauer P, Riess O, Nguyen HP (2013) A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci 33:9068–9081. https://doi.org/10.1523/jneurosci.5622-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lahut S, Gispert S, Omur O, Depboylu C, Seidel K, Dominguez-Bautista JA, Brehm N, Tireli H, Hackmann K, Pirkevi C, Leube B, Ries V, Reim K, Brose N, den Dunnen WF, Johnson M, Wolf Z, Schindewolf M, Schrempf W, Reetz K, Young P, Vadasz D, Frangakis AS, Schrock E, Steinmetz H, Jendrach M, Rub U, Basak AN, Oertel W, Auburger G (2017) Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin I loss for risk of Parkinson’s disease. Dis Model Mech 10:619–631. https://doi.org/10.1242/dmm.028035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9:759–769. https://doi.org/10.1038/nrm2514

    Article  CAS  PubMed  Google Scholar 

  29. Lione LA, Carter RJ, Hunt MJ, Bates GP, Morton AJ, Dunnett SB (1999) Selective discrimination learning impairments in mice expressing the human Huntington's disease mutation. J Neurosci 19:10428–10437

    Article  CAS  Google Scholar 

  30. Lu B, Song S, Shin YK (2010) Accessory alpha-helix of complexin I can displace VAMP2 locally in the complexin-SNARE quaternary complex. J Mol Biol 396:602–609. https://doi.org/10.1016/j.jmb.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  31. Lucas EK, Dougherty SE, McMeekin LJ, Reid CS, Dobrunz LE, West AB, Hablitz JJ, Cowell RM (2014) PGC-1alpha provides a transcriptional framework for synchronous neurotransmitter release from parvalbumin-positive interneurons. J Neurosci 34:14375–14387. https://doi.org/10.1523/jneurosci.1222-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maximov A, Tang J, Yang X, Pang ZP, Sudhof TC (2009) Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:516–521. https://doi.org/10.1126/science.1166505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Melia TJ Jr (2007) Putting the clamps on membrane fusion: how complexin sets the stage for calcium-mediated exocytosis. FEBS Lett 581:2131–2139. https://doi.org/10.1016/j.febslet.2007.02.066

    Article  CAS  PubMed  Google Scholar 

  34. Mignogna P, Viggiano D (2010) Brain distribution of genes related to changes in locomotor activity. Physiol Behav 99:618–626. https://doi.org/10.1016/j.physbeh.2010.01.026

    Article  CAS  PubMed  Google Scholar 

  35. Moriwaki C, Chiba S, Wei H, Aosa T, Kitamura H, Ina K, Shibata H, Fujikura Y (2015) Distribution of histaminergic neuronal cluster in the rat and mouse hypothalamus. J Chem Neuroanat 68:1–13. https://doi.org/10.1016/j.jchemneu.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  36. Perruolo G, Viggiano D, Fiory F, Cassese A, Nigro C, Liotti A, Miele C, Beguinot F, Formisano P (2016) Parkinson-like phenotype in insulin-resistant PED/PEA-15 transgenic mice. Sci Rep 6. https://doi.org/10.1038/srep29967

  37. Quek H, Luff J, Cheung K, Kozlov S, Gatei M, Lee CS, Bellingham MC, Noakes PG, Lim YC, Barnett NL, Dingwall S, Wolvetang E, Mashimo T, Roberts TL, Lavin MF (2017) A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum Mol Genet 26:109–123. https://doi.org/10.1093/hmg/ddw371

    Article  CAS  PubMed  Google Scholar 

  38. Radyushkin K, El-Kordi A, Boretius S, Castaneda S, Ronnenberg A, Reim K, Bickeboller H, Frahm J, Brose N, Ehrenreich H (2010) Complexin2 null mutation requires a 'second hit' for induction of phenotypic changes relevant to schizophrenia. Genes Brain Behav 9:592–602. https://doi.org/10.1111/j.1601-183X.2010.00590.x

    Article  CAS  PubMed  Google Scholar 

  39. Raevskaya NM, Dergunova LV, Vladychenskaya IP, Stavchansky VV, Oborina MV, Poltaraus AB, Limborska SA (2005) Structural organization of the human complexin 2 gene (CPLX2) and aspects of its functional activity. Gene 359:127–137. https://doi.org/10.1016/j.gene.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  40. Ramani B, Panwar B, Moore LR, Wang B, Huang R, Guan Y, Paulson HL (2017) Comparison of spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-autonomous transcriptional changes in oligodendrocytes. Hum Mol Genet 26:3362–3374. https://doi.org/10.1093/hmg/ddx224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ramos-Miguel A, Sawada K, Jones AA, Thornton AE, Barr AM, Leurgans SE, Schneider JA, Bennett DA, Honer WG (2017) Presynaptic proteins complexin-I and complexin-II differentially influence cognitive function in early and late stages of Alzheimer's disease. Acta Neuropathol 133:395–407. https://doi.org/10.1007/s00401-016-1647-9

    Article  CAS  PubMed  Google Scholar 

  42. Reim K, Wegmeyer H, Brandstatter JH, Xue MS, Rosenmund C, Dresbach T, Hofmann K, Brose N (2005) Structurally and functionally unique complexins at retinal ribbon synapses. J Cell Biol 169:669–680. https://doi.org/10.1083/jcb.200502115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rios-Leon K, Fuertes-Ruiton C, Arroyo J, Ruiz J (2017) Chemoprotective effect of the alkaloid extract of Melocactus bellavistensis against colon cancer induced in rats using 1,2-dimethylhydrazine. Rev Peru Med Exp Salud Publica 34:70–75. https://doi.org/10.17843/rpmesp.2017.341.2768

    Article  PubMed  Google Scholar 

  44. Sanger C, Schenk A, Schwen LO, Wang L, Gremse F, Zafarnia S, Kiessling F, Xie C, Wei W, Richter B, Dirsch O, Dahmen U (2015) Intrahepatic vascular anatomy in rats and mice--variations and surgical implications. PLoS One 10:e0141798. https://doi.org/10.1371/journal.pone.0141798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477. https://doi.org/10.1126/science.1161748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tallaksen CM (2008) Hereditary ataxias. Tidsskr Nor Laegeforen 128:1977–1980

    PubMed  Google Scholar 

  47. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Sudhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–1187. https://doi.org/10.1016/j.cell.2006.08.030

    Article  CAS  PubMed  Google Scholar 

  48. Thomas AM, Schwartz MD, Saxe MD, Kilduff TS (2017) Cntnap2 knockout rats and mice exhibit epileptiform activity and abnormal sleep-wake physiology. Sleep 40. https://doi.org/10.1093/sleep/zsw026

  49. Viggiano A, Cacciola G, Widmer DAJ, Viggiano D (2015) Anxiety as a neurodevelopmental disorder in a neuronal subpopulation: evidence from gene expression data. Psychiatry Res 228:729–740. https://doi.org/10.1016/j.psychres.2015.05.032

    Article  PubMed  Google Scholar 

  50. Viggiano D, Srivastava DP, Speranza L, Perrone-Capano C, Bellenchi GC, di Porzio U, Buckley NJ (2015) Quantifying barcodes of dendritic spines using entropy-based metrics. Sci Rep 5. https://doi.org/10.1038/srep14622

  51. Viggiano D, Speranza L, Crispino M, Bellenchi GC, di Porzio U, Iemolo A, De Leonibus E, Volpicelli F, Perrone-Capano C (2018) Information content of dendritic spines after motor learning. Behav Brain Res 336:256–260. https://doi.org/10.1016/j.bbr.2017.09.020

    Article  PubMed  Google Scholar 

  52. Washington PM, Forcelli PA, Wilkins T, Zapple DN, Parsadanian M, Burns MP (2012) The effect of injury severity on behavior: a phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice. J Neurotrauma 29:2283–2296. https://doi.org/10.1089/neu.2012.2456

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yang X, Cao P, Sudhof TC (2013) Deconstructing complexin function in activating and clamping Ca2+−triggered exocytosis by comparing knockout and knockdown phenotypes. Proc Natl Acad Sci U S A 110:20777–20782. https://doi.org/10.1073/pnas.1321367110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoon TY, Lu X, Diao J, Lee SM, Ha T, Shin YK (2008) Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat Struct Mol Biol 15:707–713. https://doi.org/10.1038/nsmb.1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. NSF 81471268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Hua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 799 kb)

ESM 2

(MP4 863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhao, XM., Liu, J. et al. Complexin I knockout rats exhibit a complex neurobehavioral phenotype including profound ataxia and marked deficits in lifespan. Pflugers Arch - Eur J Physiol 472, 117–133 (2020). https://doi.org/10.1007/s00424-019-02337-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-019-02337-5

Keywords

Navigation