[go: up one dir, main page]

Skip to main content
Log in

Kinetics of VO2 limb blood flow and regional muscle deoxygenation in young adults during moderate intensity, knee-extension exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The kinetics of pulmonary O2 uptake \( \left( {\dot{V}{{{\text{O}}_{{ 2\,{\text{p}}}} }} } \right), \) limb blood flow (LBF) and deoxygenation (ΔHHb) of the vastus lateralis (VL) and vastus medialis (VM) muscles during the transition to moderate-intensity knee-extension exercise (MOD) was examined. Seven males (27 ± 5 years; mean ± SD) performed repeated step transitions (n = 4) from passive exercise to MOD. Breath by breath \( \dot{V}{{{\text{O}}_{{ 2\,{\text{p}}}} }} , \) femoral artery LBF, and VL and VM muscle ∆HHb were measured, respectively, by mass spectrometer and volume turbine, Doppler ultrasound and near-infrared spectroscopy. Phase 2 \( \dot{V}{{{\text{O}}_{{ 2\,{\text{p}}}} }} , \) LBF, and ∆HHb data were fit with a mono-exponential model. The time constant (τ) of the \( \dot{V}{{{\text{O}}_{{ 2\,{\text{p}}}} }} \) and LBF response were not different (\( \tau \dot{V}{{{\text{O}}_{{ 2\,{\text{p}}}} }} , \) 24 ± 6 s; τLBF, 23 ± 8 s). The ∆HHb response did not differ between VL and VM in amplitude (VL 6.97 ± 4.22 a.u.; VM 7.24 ± 3.99 a.u.), time delay (∆HHbTD: VL 17 ± 2 s; VM 15 ± 1 s), time constant (τ∆HHb: VL 11 ± 6 s; VM 13 ± 4 s), or effective time constant [τ′∆HHb (= ∆HHbTD + τ∆HHb): VL 28 ± 7 s; VM 28 ± 4 s]. Adjustments in ∆HHb in VL and VM depict a similar balance of regional O2 delivery and utilization within the quadriceps muscle group. The τ′∆HHb and \( \tau \dot{V}{{{\text{O}}_{{ 2\,{\text{p}}}} }} \) were similar, however, the ∆HHb displayed an “overshoot” relative to the steady-state levels reflecting a slower alteration of microvascular blood flow (O2 delivery) relative to O2 utilization, necessitating a greater reliance on O2 extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babcock MA, Paterson DH, Cunningham DA, Dickinson JR (1994) Exercise on-transient gas exchange kinetics are slowed as a function of age. Med Sci Sports Exerc 26:440–446

    CAS  PubMed  Google Scholar 

  • Barstow TJ, Buchthal S, Zanconato S, Cooper DM (1994) Muscle energetics and pulmonary oxygen uptake kinetics during moderate exercise. J Appl Physiol 77:1742–1749

    CAS  PubMed  Google Scholar 

  • Beaver WL, Lamarra N, Wasserman K (1981) Breath-By-breath measurement of true alveolar gas exchange. J Appl Physiol 51:1662–1675

    CAS  PubMed  Google Scholar 

  • Bell C, Paterson DH, Kowalchuk JM, Moy AP, Thorp DB, Noble EG, Taylor AW, Cunningham DA (2001) Determinants of oxygen uptake kinetics in older humans following single-limb endurance exercise training. Exp Physiol 86:659–665

    Article  CAS  PubMed  Google Scholar 

  • Clifford PS, Hellsten Y (2004) Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol 97:393–403

    Article  PubMed  Google Scholar 

  • De Blasi RA, Ferrari M, Natali A, Conti G, Mega A, Gasparetto A (1994) Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy. J Appl Physiol 76:1388–1393

    PubMed  Google Scholar 

  • DeLorey DS, Kowalchuk JM, Paterson DH (2003) Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 95:113–120

    PubMed  Google Scholar 

  • DeLorey DS, Kowalchuk JM, Paterson DH (2004a) Effect of age on O2 uptake kinetics and the adaptation of muscle deoxygenation at the onset of moderate-intensity cycling exercise. J Appl Physiol 97:165–172

    Article  PubMed  Google Scholar 

  • DeLorey DS, Kowalchuk JM, Paterson DH (2004b) Effects of prior heavy-intensity exercise on pulmonary O2 uptake and muscle deoxygenation kinetics in young and older adult humans. J Appl Physiol 97:998–1005

    Article  PubMed  Google Scholar 

  • DeLorey DS, Shaw CN, Shoemaker JK, Kowalchuk JM, Paterson DH (2004c) The effect of hypoxia on pulmonary O2 uptake, leg blood flow and muscle deoxygenation during single-leg knee-extension exercise. Exp Physiol 89:293–302

    Article  PubMed  Google Scholar 

  • DeLorey DS, Kowalchuk JM, Heenan AP, duManoir GR, Paterson DH (2007) Prior exercise speeds pulmonary O2 uptake kinetics by increases in both local muscle O2 availability and O2 utilization. J Appl Physiol 103:771–778

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth ML (2000) The red blood cell as an oxygen sensor: what is the evidence? Acta Physiol Scand 168:551–559

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth ML, Forrester T, Ellis CG, Dietrich HH (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol 269:H2155–H2161

    CAS  PubMed  Google Scholar 

  • Ferrari M, Binzoni T, Quaresima V (1997) Oxidative metabolism in muscle. Philos Trans R Soc Lond B Biol Sci 352:677–683

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LF, Poole DC, Barstow TJ (2005a) Muscle blood flow-O2 uptake interaction and their relationship to on-exercise dynamics of O2 exchange. Respir Physiol Neurobiol 147:91–103

    Article  PubMed  Google Scholar 

  • Ferreira LF, Townsend DK, Lutjemeier BJ, Barstow TJ (2005b) Muscle capillary blood flow kinetics estimated from pulmonary O2 uptake and near-infrared spectroscopy. J Appl Physiol 98:1820–1828

    Article  PubMed  Google Scholar 

  • Ferreira LF, McDonough P, Behnke BJ, Musch TI, Poole DC (2006) Blood flow and O2 extraction as a function of O2 uptake in muscles composed of different fiber types. Respir Physiol Neurobiol 153:237–249

    Google Scholar 

  • Gill RW (1985) Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 11:625–641

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Alonso J, Olsen DB, Saltin B (2002) Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. Circ Res 91:1046–1055

    Article  CAS  PubMed  Google Scholar 

  • Grassi B (2003) Oxygen uptake kinetics: old and recent lessons from experiments on isolated muscle in situ. Eur J Appl Physiol 90:242–249

    Article  PubMed  Google Scholar 

  • Grassi B, Poole DC, Richardson RS, Knight DR, Erickson BK, Wagner PD (1996) Muscle O2 uptake kinetics in humans: implications for metabolic control. J Appl Physiol 80:988–998

    CAS  PubMed  Google Scholar 

  • Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, Cerretelli P (2003) Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 95:149–158

    PubMed  Google Scholar 

  • Gurd BJ, Peters SJ, Heigenhauser GJ, Leblanc PJ, Doherty TJ, Paterson DH, Kowalchuk JM (2006) Prior heavy exercise elevates pyruvate dehydrogenase activity and speeds O2 uptake kinetics during subsequent moderate-intensity exercise in healthy young adults. J Physiol 577:985–996

    Article  CAS  PubMed  Google Scholar 

  • Gurd BJ, Peters SJ, Heigenhauser GJ, Leblanc PJ, Doherty TJ, Paterson DH, Kowalchuk JM (2007) O2 uptake kinetics and pyruvate dehydrogenase activity and muscle deoxygenation in young and older adults during the transition to moderate-intensity exercise. Am J Physiol 294:R577–R584

    Google Scholar 

  • Harper AJ, Ferreira LF, Lutjemeier BJ, Townsend DK, Barstow TJ (2006) Femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise. Exp Physiol 91:661–671

    Article  PubMed  Google Scholar 

  • Hughson RL, MacDonald MJ, Shoemaker JK, Borkhoff C (1997) Alveolar oxygen uptake and blood flow dynamics in knee extension ergometry. Methods Inf Med 36:364–367

    CAS  PubMed  Google Scholar 

  • Jones AM, Davies RC, Ferreira LF, Barstow TJ, Koga S, Poole DC (2009) Reply to Quaresima and Ferrari. J Appl Physiol 107:372–373

    Article  Google Scholar 

  • Kalliokoski KK, Kemppainen J, Larmola K, Takala TO, Peltoniemi P, Oksanen A, Ruotsalainen U, Cobelli C, Knuuti J, Nuutila P (2000) Muscle blood flow and flow heterogeneity during exercise studied with positron emission tomography in humans. Eur J Appl Physiol 83:395–401

    Article  CAS  PubMed  Google Scholar 

  • Kalliokoski KK, Laaksonen MS, Takala TO, Knuuti J, Nuutila P (2003) Muscle oxygen extraction and perfusion heterogeneity during continuous and intermittent static exercise. J Appl Physiol 94:953–958

    PubMed  Google Scholar 

  • Koga S, Poole DC, Shiojiri T, Kondo N, Fukuba Y, Miura A, Barstow TJ (2005) Comparison of oxygen uptake kinetics during knee extension and cycle exercise. Am J Physiol 288:R212–R220

    CAS  Google Scholar 

  • Koga S, Poole DC, Ferreira LF, Whipp BJ, Kondo N, Saitoh T, Ohmae E, Barstow TJ (2007) Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise. J Appl Physiol 103:2049–2056

    Article  PubMed  Google Scholar 

  • Koskolou MD, Calbet JA, Radegran G, Roach RC (1997) Hypoxia and the cardiovascular response to dynamic knee-extensor exercise. Am J Physiol 272:H2655–H2663

    CAS  PubMed  Google Scholar 

  • Laaksonen MS, Kalliokoski KK, Kyrolainen H, Kemppainen J, Teras M, Sipila H, Nuutila P, Knuuti J (2003) Skeletal muscle blood flow and flow heterogeneity during dynamic and isometric exercise in humans. Am J Physiol 284:H979–H986

    CAS  Google Scholar 

  • Laughlin MH, Armstrong RB (1982) Muscular blood flow distribution patterns as a function of running speed in rats. Am J Physiol 243:H296–H306

    CAS  PubMed  Google Scholar 

  • MacDonald MJ, Shoemaker JK, Tschakovsky ME, Hughson RL (1998) Alveolar oxygen uptake and femoral artery blood flow dynamics in upright and supine leg exercise in humans. J Appl Physiol 85:1622–1628

    CAS  PubMed  Google Scholar 

  • MacPhee SL, Shoemaker JK, Paterson DH, Kowalchuk JM (2005) Kinetics of O2 uptake, leg blood flow, and muscle deoxygenation are slowed in the upper compared with lower region of the moderate-intensity exercise domain. J Appl Physiol 99:1822–1834

    Article  PubMed  Google Scholar 

  • McCreary CR, Chilibeck PD, Marsh GD, Paterson DH, Cunningham DA, Thompson RT (1996) Kinetics of pulmonary oxygen uptake and muscle phosphates during moderate intensity calf exercise. J Appl Physiol 81:1331–1338

    CAS  PubMed  Google Scholar 

  • McDonough P, Behnke BJ, Padilla DJ, Musch TI, Poole DC (2005) Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. J Physiol 56:903–913

    Article  Google Scholar 

  • Paterson ND, Kowalchuk JM, Paterson DH (2005a) Kinetics of VO2 and femoral artery blood flow during heavy-intensity, knee-extension exercise. J Appl Physiol 99:683–690

    Article  PubMed  Google Scholar 

  • Paterson ND, Kowalchuk JM, Paterson DH (2005b) Effects of prior heavy-intensity exercise during single-leg knee extension on VO2 kinetics and limb blood flow. J Appl Physiol 99:1462–1470

    Article  PubMed  Google Scholar 

  • Pincivero DM, Gandhi V, Timmons MK, Coelho AJ (2006) Quadriceps femoris electromyogram during concentric, isometric and eccentric phases of fatiguing dynamic knee extensions. J Biomech 39:246–254

    Article  PubMed  Google Scholar 

  • Radegran G, Saltin B (1998) Muscle blood flow at onset of dynamic exercise in humans. Am J Physiol 274:H314–H322

    CAS  PubMed  Google Scholar 

  • Richardson RS, Haseler LJ, Nygren AT, Bluml S, Frank LR (2001) Local perfusion and metabolic demand during exercise: a noninvasive MRI method of assessment. J Appl Physiol 91:1845–1853

    CAS  PubMed  Google Scholar 

  • Rossiter HB, Ward SA, Doyle VL, Howe FA, Griffiths JR, Whipp BJ (1999) Inferences from pulmonary O2 uptake with respect to intramuscular [phosphocreatine] kinetics during moderate exercise in humans. J Appl Physiol 518:921–932

    CAS  Google Scholar 

  • Thomas GD, Segal SS (2004) Neural control of muscle blood flow during exercise. J Appl Physiol 97:731–738

    Article  CAS  PubMed  Google Scholar 

  • Travnik L, Pernus F, Erzen I (1995) Histochemical and morphometric characteristics of the normal human vastus medialis longus and vastus medialis obliquus muscles. J Anat 187:403–411

    PubMed  Google Scholar 

  • Tschakovsky ME, Hughson RL (1999) Interaction of factors determining oxygen uptake at the onset of exercise. J Appl Physiol 86:1101–1113

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the technical assistance of Dr Aaron P. Heenan in collection of the ultrasound blood flow data and Brad Hansen’s overall support in the laboratory. This investigation was supported by Natural Science and Engineering Research Council of Canada.

Conflict of interest statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald H. Paterson.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

duManoir, G.R., DeLorey, D.S., Kowalchuk, J.M. et al. Kinetics of VO2 limb blood flow and regional muscle deoxygenation in young adults during moderate intensity, knee-extension exercise. Eur J Appl Physiol 108, 607–617 (2010). https://doi.org/10.1007/s00421-009-1263-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1263-7

Keywords

Navigation