[go: up one dir, main page]

Skip to main content

Advertisement

Log in

An RCM multi-physics ensemble over Europe: multi-variable evaluation to avoid error compensation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Regional Climate Models are widely used tools to add detail to the coarse resolution of global simulations. However, these are known to be affected by biases. Usually, published model evaluations use a reduced number of variables, frequently precipitation and temperature. Due to the complexity of the models, this may not be enough to assess their physical realism (e.g. to enable a fair comparison when weighting ensemble members). Furthermore, looking at only a few variables makes difficult to trace model errors. Thus, in many previous studies, these biases are described but their underlying causes and mechanisms are often left unknown. In this work the ability of a multi-physics ensemble in reproducing the observed climatologies of many variables over Europe is analysed. These are temperature, precipitation, cloud cover, radiative fluxes and total soil moisture content. It is found that, during winter, the model suffers a significant cold bias over snow covered regions. This is shown to be related with a poor representation of the snow-atmosphere interaction, and is amplified by an albedo feedback. It is shown how two members of the ensemble are able to alleviate this bias, but by generating a too large cloud cover. During summer, a large sensitivity to the cumulus parameterization is found, related to large differences in the cloud cover and short wave radiation flux. Results also show that small errors in one variable are sometimes a result of error compensation, so the high dimensionality of the model evaluation problem cannot be disregarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://ceres.larc.nasa.gov/order_data.php.

  2. http://www.mmm.ucar.edu/wrf/users/wrfv3.3/known-prob-3.3.1.html

References

  • Alapaty K, Herwehe JA, Otte TL, Nolte CG, Bullock OR, Mallard MS, Kain JS, Dudhia J (2012) Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys Res Lett. doi:10.1029/2012GL054031

  • Argüeso D, Hidalgo-Muñoz J, Gámiz-Fortis S, Esteban-Parra M, Dudhia J, Castro-Díez Y (2011) Evaluation of WRF parameterizations for climate studies over Southern Spain using a multi-step regionalization. J Clim. doi:10.1175/JCLI-D-11-00073.1

  • Awan N, Truhetz H, Gobiet A (2011) Parameterization induced error-characteristics of MM5 and WRF operated in climate mode over the Alpine region: an ensemble based analysis. J Clim 24(12):3107–3123. doi:10.1175/2011JCLI3674.1

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585. doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

    Article  Google Scholar 

  • Christensen J, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44(2–3):179–194. doi:10.3354/cr00916

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin S et al. (2004) Description of the NCAR community atmosphere model (CAM 3.0). NCAR Tech Note NCAR/TN-464+ STR

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Dharssi I, Bovis KJ, Macpherson B, Jones CP (2011) Operational assimilation of ASCAT surface soil wetness at the Met Office. Hydrol Earth Syst Sci 15(8):2729–2746. doi:10.5194/hess-15-2729-2011

    Article  Google Scholar 

  • Díaz JP, González A, Expósito FJ, Pérez JC, Fernández J, García-Díez M, Taima D (2015) WRF multi-physics simulation of clouds in the African region. Q J R Meteorol Soc (submitted)

  • Fernández J, Montávez J, Sáenz J, González-Rouco J, Zorita E (2007) Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle. J Geophys Res 112(D4):101. doi:10.1029/2005JD006649

    Google Scholar 

  • Fernández-Quiruelas V, Fita L, Fernández J, Cofiño A (2010) WRF workflow on the Grid with WRF4G. In: 11th WRF users’ workshop. Boulder (CO), USA

  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res Atmos 108(D3):4124. doi:10.1029/2002JD002287

    Article  Google Scholar 

  • García-Díez M, Fernández J, Fita L, Yagüe C (2012) Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q J R Meteorol Soc. doi:10.1002/qj.1976

  • Giorgi F, Coppola E (2010) Does the model regional bias affect the projected regional climate change? An analysis of global model projections. Clim Change 100(3–4):787–795. doi:10.1007/s10584-010-9864-z

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar G et al (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ (WMO) Bull 58(3):175

    Google Scholar 

  • Grell G, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29(14):38-1. doi:10.1029/2002GL015311

    Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1995) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note

  • Greve P, Warrach-Sagi K, Wulfmeyer V (2013) Evaluating soil water content in a WRF-Noah downscaling experiment. J Appl Meteorol Climatol 52(10):2312–2327. doi:10.1175/JAMC-D-12-0239.1

    Article  Google Scholar 

  • Gupta Stackhouse PW, Mikovitz JC, Cox SJ, Zhang T (2006) Surface radiation budget project completes 22-year data set. GEWEX WCRP News 14(4):12–13

    Google Scholar 

  • Haylock M, Hofstra N, Tank A, Klok E, Jones P, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20):119

    Google Scholar 

  • Herrera S, Fita L, Fernández J, Gutiérrez J (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res 115(D21):117. doi:10.1029/2010JD013936

    Google Scholar 

  • Herwehe JA, Alapaty K, Spero TL, Nolte CG (2014) Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions: RCM sims with Cu-radiation interactions. J Geophys Res Atmos 119(9):5317–5330. doi:10.1002/2014JD021504

    Article  Google Scholar 

  • Hofstra N, Haylock M, New M, Jones PD (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res. doi:10.1029/2009JD011799

  • Hong S, Dudhia J, Chen S (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120

    Article  Google Scholar 

  • Hong S, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

    Article  Google Scholar 

  • Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res Atmos. doi:10.1029/2008JD009944

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, others, (2013) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change. doi:10.1007/s10113-013-0499-2

  • Jaeger EB, Seneviratne SI (2011) Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36(9–10):1919–1939. doi:10.1007/s00382-010-0780-8

    Article  Google Scholar 

  • Janjic ZI (2000) Comments on “Development and evaluation of a convection scheme for use in climate models”. J Atmos Sci 57(21):3686–3686. doi:10.1175/1520-0469(2000)057<3686:CODAEO>2.0.CO;2

    Article  Google Scholar 

  • Jerez S, Montavez JP, Jimenez-Guerrero P, Gomez-Navarro JJ, Lorente-Plazas R, Zorita E (2013) A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Clim Dyn 40(11–12):3023–3046. doi:10.1007/s00382-012-1539-1

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

    Article  Google Scholar 

  • Kothe S, Ahrens B (2010) On the radiation budget in regional climate simulations for West Africa. J Geophys Res Atmos. doi:10.1029/2010JD014331

  • Kothe S, Dobler A, Beck A, Ahrens B (2011) The radiation budget in a regional climate model. Clim Dyn 36(5–6):1023–1036. doi:10.1007/s00382-009-0733-2

    Article  Google Scholar 

  • Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7(4):1297–1333. doi:10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  • Kysely J, Plavcova E (2010) A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations. J Geophys Res Atmos. doi:10.1029/2010JD014123

  • Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong T, Soden BJ, Stephens GL (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5(2):110–113. doi:10.1038/ngeo1375

    Article  Google Scholar 

  • Mass C (2013) Strange linear features in WRF clouds and precipitation: diagnosis and correction. In: 14th Annual WRF users’ workshop, Boulder, Colorado

  • Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, Haak H, Jungclaus J, Klocke D, Matei D, Mikolajewicz U, Notz D, Pincus R, Schmidt H, Tomassini L (2012) Tuning the climate of a global model. J Adv Model Earth Syst. doi:10.1029/2012MS000154

  • McConnell S (2004) Code complete. O’Reilly Media Inc., Sebastopol

    Google Scholar 

  • Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis S, Sain S, Caya D, Correia J Jr, Flory D, Gutowski W, Gutowski W et al (2012) The North American regional climate change assessment program: overview of phase I results. Bull Am Meteorol Soc 93(9):1337–1362. doi:10.1175/BAMS-D-11-00223.1

    Article  Google Scholar 

  • Menéndez M, García-Díez M, Fita L, Fernández J, Méndez FJ, Gutiérrez JM (2014) High-resolution sea wind hindcasts over the Mediterranean area. Clim Dyn 42(7–8):1857–1872. doi:10.1007/s00382-013-1912-8

    Article  Google Scholar 

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16,663–16,716. doi:10.1029/97JD00237

    Article  Google Scholar 

  • Mooney P, Mulligan F, Fealy R (2013) Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of Europe over the period 1990–1995. J Clim 26(3):1002–1017. doi:10.1175/JCLI-D-11-00676.1

    Article  Google Scholar 

  • Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one-and two-moment schemes. Mon Weather Rev 137(3):991–1007. doi:10.1175/2008MWR2556.1

    Article  Google Scholar 

  • Pessacg NL, Solman SA, Samuelsson P, Sanchez E, Marengo J, Li L, Remedio ARC, Rocha RPd, Mourão C, Jacob D (2013) The surface radiation budget over South America in a set of regional climate models from the CLARIS-LPB project. Clim Dyn. doi:10.1007/s00382-013-1916-4

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394. doi:10.1175/BAMS-85-3-381

    Article  Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre regional climate model RCA3: model description and performance. Tellus A 63(1):4–23

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Wang W, Powers J (2008) A description of the advanced research WRF version 3. Tech. rep, NCAR

  • Stegehuis AI, Vautard R, Ciais P, Teuling AJ, Miralles DG, Wild M (2014) An observation-constrained multi-physics RCM ensemble for simulating European mega-heatwaves. Geosci Model Dev Discuss 7(6):7861–7886. doi:10.5194/gmdd-7-7861-2014

    Article  Google Scholar 

  • Sugihara G, May R, Ye H, Hsieh Ch, Deyle E, Fogarty M, Munch S (2012) Detecting causality in complex ecosystems. Science 338(6106):496–500. doi:10.1126/science.1227079

    Article  Google Scholar 

  • Sundqvist H, Berge E, Kristjánsson JE (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117(8):1641–1657. doi:10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2

    Article  Google Scholar 

  • Tripathi OP, Dominguez F (2013) Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern US. J Geophys Res Atmos 118(14):7591–7605. doi:10.1002/jgrd.50590

    Article  Google Scholar 

  • Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Güttler I, others (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn. doi:10.1007/s00382-013-1714-z

  • Waliser D, Kim J, Xue Y, Chao Y, Eldering A, Fovell R, Hall A, Li Q, Liou KN, McWilliams J, Kapnick S, Vasic R, Sale FD, Yu Y (2011) Simulating cold season snowpack: impacts of snow albedo and multi-layer snow physics. Clim Change 109(1):95–117. doi:10.1007/s10584-011-0312-5

    Article  Google Scholar 

  • Wang Z, Zeng X, Decker M (2010) Improving snow processes in the Noah land model. J Geophys Res Atmos. doi:10.1029/2009JD013761

  • Watanabe M, Shiogama H, Yokohata T, Kamae Y, Yoshimori M, Ogura T, Annan JD, Hargreaves JC, Emori S, Kimoto M (2012) Using a multiphysics ensemble for exploring diversity in cloud-shortwave feedback in GCMs. J Clim 25(15):5416–5431. doi:10.1175/JCLI-D-11-00564.1

    Article  Google Scholar 

  • Xu Z, Yang ZL (2012) An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J Clim 25(18):6271–6286. doi:10.1175/JCLI-D-12-00005.1

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Projects EXTREMBLES (CGL2010-21869) and CORWES (CGL2010-22158-C02), funded by the Spanish R&D Programme. WRF4G (CGL2011-28864) provided the framework to run the model; this Spanish R&D project is co-funded by the European Regional Development Fund (ERDF). Partial support from the 7th European Framework Programme (FP7) through Grant 308291 (EUPORIAS) is also acknowledged. The E-OBS dataset was produced within the EU-FP6 project ENSEMBLES http://www.ensembles-eu.org and the data was provided through the ECA&D Project http://eca.knmi.nl. Radiation data from CERES were obtained from the NASA Langley Research Center Atmospheric Science Data Center. GLDAS data were acquired as part of the mission of NASA’s Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markel García-Díez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Díez, M., Fernández, J. & Vautard, R. An RCM multi-physics ensemble over Europe: multi-variable evaluation to avoid error compensation. Clim Dyn 45, 3141–3156 (2015). https://doi.org/10.1007/s00382-015-2529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2529-x

Keywords