[go: up one dir, main page]

Skip to main content
Log in

Altered expression of Na+ transporters at the mRNA level in rat normal and hypertrophic myocardium

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Intracellular Na+ ([Na+]i) regulation plays a crucial role in the structural, mechanical, and electrical properties of myocardium. It is assumed that the [Na+]i handling system may differ not only between normal and diseased hearts but also regionally within a heart. To gain new insight concerning disease- and region-dependent differences in the [Na+]i-regulatory system, we investigated mRNA expression of Na+ transporters, the principal determinants of [Na+]i. Nonischemic pressure-overloaded hypertrophy was created by suprarenal abdominal aortic constriction of 50% for 7 weeks. mRNA abundances of Na+-Ca2+ exchanger (NCX1), Na+-H+ exchanger (NHE1), Na+-K+-2Cl exchanger (NKCC1) and Na+, K+-ATPase multigene family(α1, α2, α3, and β1 isoforms) were measured by the real-time quantitative polymerase chain reaction method. mRNA abundance of all transporters mediating Na+ influx (NCX1, NHE1, and NKCC1) was significantly upregulated as compared to normal. In contrast, Na+-efflux-mediating transporter (Na+, K+-ATPase) mRNA expression was unaltered between normal and hypertrophic hearts. Losartan, an angiotensin II AT1 receptor antagonist, significantly attenuated upregulation of Na+-influx-mediating transporters induced by aortic constriction. The onset of Na+-influx-mediating transporter upregulation occurred within 5 days following constriction. In normal and hypertrophied hearts, mRNA of all Na+-influx-mediating transporters was expressed in order of abundance as: apex > septum ∼ free wall of left ventricles. A transmural gradient in expression was also evident in normal hearts (midcardium > endo- and epicardium), which was attenuated under hypertrophic development. Myocardial hypertrophy is associated with significant changes in the spatial distribution and expression levels of Na+ transporters. The upregulation of Na influx transporters during hypertrophy may contribute to the remodeling process, modulate contractility and promote arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shipsey SJ, Bryant SM, Hart G (1997) Effects of hypertrophy on regional action potential characteristics in the rat left ventricle. Circulation 96:2061–2068

    PubMed  CAS  Google Scholar 

  2. Gomez AM, Benitah JP, Henzel D, Vinet A, Lorente P, Delgado C (1997) Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 272:H1078–H1086

    PubMed  CAS  Google Scholar 

  3. Volk T, Nguyen TH-D, Schultz J-H, Faulhaber J, Ehmke H (2001) Regional alterations of repolarizing K+ currents among the left ventricular free wall of rats with ascending aortic stenosis. J Physiol 530:443–455

    Article  PubMed  CAS  Google Scholar 

  4. Yin FC. Ventricular wall stress (1981) Circ Res 49:829–842

    PubMed  CAS  Google Scholar 

  5. Bloor CM, Nimmo L, McKirnan MD, Zhang Y, White FC (1997) Increased gene expression of plasminogen activators and inhibitors in left ventricular hypertrophy. Mol Cell Biochem 176:265–271

    Article  PubMed  CAS  Google Scholar 

  6. Beil AH, Schmieder RE (1995) Salt intake as a determinant of cardiac hypertrophy. Blood Pressure 2:30–34

    Article  CAS  Google Scholar 

  7. Yamamoto T, Shirayama T, Sakatani T, Takahashi T, Tanaka H, Takamatsu T, Spitzer KW, Matsubara H (2007) Enhanced activity of ventricular Na+-HCO 3 cotransport in pressure-overload hypertrophy. Am J Physiol 293:H1254–H1264

    CAS  Google Scholar 

  8. Yamamoto T, Swietach P, Rossini A, Loh S-H, Vaughan-Jones RD, Spitzer KW (2005) Functional diversity of electrogenic Na+-HCO 3 cotransport in ventricular myocytes from rat, rabbit, and guinea pig. J Physiol 562:455–475

    Article  PubMed  CAS  Google Scholar 

  9. Sweadner KJ (1989) Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta 988:185–220

    PubMed  CAS  Google Scholar 

  10. Book C-BS, Moore RL, Semanchik A, Ng YC (1994) Cardiac hypertrophy alters expression of Na+, K+-ATPase subunit isoforms at mRNA and protein levels in rat myocardium. J Mol Cell Cardiol 26:591–600

    Article  PubMed  CAS  Google Scholar 

  11. Verdonck F, Volders PG, Vos MA, Sipido KR (2003) Intracellular Na+ and altered Na+ transport mechanisms in cardiac hypertrophy and failure. J Mol Cell Cardiol 35:5–25

    Article  PubMed  CAS  Google Scholar 

  12. Sipido KR, Volders PG, Vos MA, Verdonck F (2002) Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc Res 53:782–805

    Article  PubMed  CAS  Google Scholar 

  13. Takewaki S, Kuro-o M, Hiroi Y, Yamazaki T, Noguchi T, Miyagishi A, Nakahara K, Aikawa M, Manabe I, Yazaki Y, Nagai R (1995) Activation of Na+-H+ antiporter (NHE-1) gene expression during growth, hypertrophy and proliferation of the rabbit cardiovascular system. J Mol Cell Cardiol 27:729–742

    Article  PubMed  CAS  Google Scholar 

  14. Fliegel L, Karmazyn M (2004) The cardiac Na-H exchanger: a key downstream mediator for the cellular hypertrophic effects of paracrine, autocrine and hormonal factors. Biochem Cell Biol 82:626–635

    Article  PubMed  CAS  Google Scholar 

  15. Dulce RA, Hurtado C, Ennis IL, Garciarena CD, Alvarez MC, Caldiz C, Pierce GN, Portiansky EL, Chiappe de Cingolani GE, Camilion de Hurtado MC (2006) Endothelin-1 induced hypertrophic effect in neonatal rat cardiomyocytes: Involvement of Na+/H+ and Na+/Ca2+ exchangers. J Mol Cell Cardiol 41:807–815

    Article  PubMed  CAS  Google Scholar 

  16. Sakatani T, Shirayama T, Yamamoto T, Mani H, Shiraishi H, Matsubara H (2006) Cardiac hypertrophy diminished effects of isoproterenol on delayed rectifier potassium current in rat heart. J Physiol Sci 56:173–181

    Article  PubMed  CAS  Google Scholar 

  17. Lim HW, De Windt LJ, Steinberg L, Taigen T, Witt SA, Kimball TR, Molkentin JD (2000) Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. Circulation 101:2431–2437

    PubMed  CAS  Google Scholar 

  18. Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 106:R25–R29

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi K, Osanai T, Nakano T, Wakui M, Okumura K (2002) Enhanced activities and gene expression of phosphodiesterase types 3 and 4 in pressure-induced congestive heart failure. Heart Vessels 16:249–256

    Article  PubMed  Google Scholar 

  20. Mishra S, Sabbah HN, Rastogi S, Imai M, Gupta RC (2005) Reduced sarcoplasmic reticulum Ca2+ uptake and increased Na+-Ca2+ exchanger expression in left ventricle myocardium of dogs with progression of heart failure. Heart Vessels 20:23–32

    Article  PubMed  Google Scholar 

  21. Fowler MR, Naz JR, Graham MD, Bru-Mercier G, Harrison SM, Orchard CH (2005) Decreased Ca2+ extrusion via Na+/Ca2+ exchange in epicardial left ventricular myocytes during compensated hypertrophy. Am J Physiol 288:H2431–H2438

    CAS  Google Scholar 

  22. Kuribayashi T, Furukawa K, Katsume H, Ijichi H, Ibata Y (1986) Regional differences of myocyte hypertrophy and three-dimensional deformation of the heart. Am J Physiol 250:H378–H388

    PubMed  CAS  Google Scholar 

  23. Omens JH, Rodriguez EK, McCulloch AD (1996) Transmural changes in stress-free myocyte morphology during pressure overload hypertrophy in the rat. J Mol Cell Cardiol 28:1975–1983

    Article  PubMed  CAS  Google Scholar 

  24. Pogwizd SM, Sipido KR, Verdonck F, Bers DM (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57:887–396

    Article  PubMed  CAS  Google Scholar 

  25. Li J, Li P, Feng X, Li Z, Hou R, Han C, Zhang Y (2003) Effects of losartan on pressure overload-induced cardiac gene expression profiling in rats. Clin Exp Pharmacol Physiol 30:827–832

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka K, Ashizawa N, Kawano H, Sato O, Seto S, Nishihara E, Terazono H, Isomoto S, Shinohara K, Yano K (2007) Aldosterone induces circadian gene expression of clock genes in H9c2 cardiomyoblasts. Heart Vessels 22:254–260

    Article  PubMed  Google Scholar 

  27. Currie S, Quinn FR, Sayeed RA, Duncan AM, Kettlewell S, Smith GL (2005) Selective down-regulation of sub-endocardial ryanodine receptor expression in a rabbit model of left ventricular dysfunction. J Mol Cell Cardiol 39:309–317

    Article  PubMed  CAS  Google Scholar 

  28. Prestle J, Dieterich S, Preuss M, Bieligk U, Hasenfuss G (1999) Heterogeneous transmural gene expression of calcium-handling proteins and natriuretic peptides in the failing human heart. Cardiovasc Res 43:323–331

    Article  PubMed  CAS  Google Scholar 

  29. Quinn FR, Currie S, Duncan AM, Miller S, Sayeed R, Cobbe SM, Smith GL (2003) Myocardial infarction causes increased expression but decreased activity of the myocardial Na+-Ca2+ exchanger in the rabbit. J Physiol 553:229–242

    Article  PubMed  CAS  Google Scholar 

  30. Xiong W, Tian Y, DiSilvestre D, Tomaselli GF (2005) Transmural heterogeneity of Na+-Ca2+ exchange: evidence for differential expression in normal and failing hearts. Circ Res 97:207–209

    Article  PubMed  CAS  Google Scholar 

  31. Rosati B, Grau F, McKinnon D (2006) Regional variation in mRNA transcript abundance within the ventricular wall. J Mol Cell Cardiol 40:295–302

    Article  PubMed  CAS  Google Scholar 

  32. Chahine M, Bkaily G, Nader M, Al-Khoury J, Jacques D, Beier N, Scholz W (2005) NHE-1-dependent intracellular sodium overload in hypertrophic hereditary cardiomyopathy: prevention by NHE-1 inhibitor. J Mol Cell Cardiol 38:571–582

    Article  PubMed  CAS  Google Scholar 

  33. Gu J-W, Anand V, Shek EW, Moore MC, Brady AL, Kelly WC, Adair TH (1998) Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells. Hypertension 31:1083–1087

    PubMed  CAS  Google Scholar 

  34. Frohlich ED, Chien Y, Sesoko S, Pegram BL (1993) Relationship between dietary sodium intake, hemodynamics, and cardiac mass in SHR and WKY rats. Am J Physiol 264:R30–R34

    PubMed  CAS  Google Scholar 

  35. Kusumoto K, Haist JV, Karmazyn M (2001) Na+/H+ exchange inhibition reduces hypertrophy and heart failure after myocardial infarction in rats. Am J Physiol 280:H738–H745

    CAS  Google Scholar 

  36. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T., Shirayama, T., Takahashi, T. et al. Altered expression of Na+ transporters at the mRNA level in rat normal and hypertrophic myocardium. Heart Vessels 24, 54–62 (2009). https://doi.org/10.1007/s00380-008-1071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-008-1071-8

Key words

Navigation