Abstract
We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvátal’s well-known degree condition for hamiltonicity is best possible.
Similar content being viewed by others
References
Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (1992)
Anderson, I.: Perfect matchings of a graph. J. Combin. Theory Ser. B 10, 183–186 (1971)
Bauer, D., Broersma, H.J., van den Heuvel, J., Kahl, N., Schmeichel, E.: Degree sequences and the existence of \(k\)-factors. Graphs Combin. 28, 149–166 (2012)
Bauer, D., Broersma, H.J., van den Heuvel, J., Kahl, N., Schmeichel, E.: Toughness and vertex degrees. J. Graph Theory 72, 209–219 (2013)
Bauer, D., Broersma, H.J., Veldman, H.J.: Not every 2-tough graph is hamiltonian. Discrete Appl. Math. 99, 317–321 (2000)
Bauer, D., Hakimi, S.L., Kahl, N., Schmeichel, E.: Sufficient degree conditions for \(k\)-edge-connectedness of a graph. Networks 54, 95–98 (2009)
Bauer, D., Hakimi, S.L., Schmeichel, E.: Recognizing tough graphs is NP-hard. Discrete Appl. Math. 28, 191–195 (1990)
Bauer, D., Kahl, N., Schmeichel, E., Woodall, D.R., Yatauro, M.: Improving theorems in a best monotone sense. Congr. Numer. 216, 87–95 (2013)
Bauer, D., Kahl, N., Schmeichel, E., Woodall, D.R., Yatauro, M.: Toughness and binding number. Discrete Appl. Math. 165, 60–68 (2014)
Bauer, D., Kahl, N., Schmeichel, E., Yatauro, M.: Best monotone degree conditions for binding number. Discrete Math. 311, 2037–2043 (2011)
Bauer, D., Morgana, A., Schmeichel, E.F.: A simple proof of a theorem of Jung. Discrete Math. 79, 147–152 (1989/1990)
Bauer, D., Nevo, A., Schmeichel, E.: Best monotone condition for 1-tough \(\Rightarrow \) 2-factor (in preparation)
Bauer, D., Nevo, A., Schmeichel, E.: Best monotone condition for 2-factor \(\Rightarrow \) 1-tough (in preparation)
Bauer, D., Nevo, A., Schmeichel, E.: Note on binding number, vertex degrees, and 1-factors (in preparation)
Bauer, D., Nevo, A., Schmeichel, E.: Vertex arboricity and vertex degrees (in preparation)
Bauer, D., Nevo, A., Schmeichel, E., Woodall, D.R., Yatauro, M.: Best monotone degree conditions for binding number and cycle structure. Discrete Appl. Math. (2014). doi:10.1016/j.dam.2013.12.014
Bauer, D., Schmeichel, E.: Hamiltonian degree conditions which imply a graph is pancyclic. J. Combin. Theory Ser. B 48, 111–116 (1990)
Bauer, D., Schmeichel, E.: Binding number, minimum degree, and cycle structure in graphs. J. Graph Theory 71, 219–228 (2012)
Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)
Boesch, F.: The strongest monotone degree condition for \(n\)-connectedness of a graph. J. Combin. Theory Ser. B 16, 162–165 (1974)
Bondy, J.A.: Properties of graphs with constraints on degrees. Studia Sci. Math. Hungar. 4, 473–475 (1969)
Bondy, J.A., Chvátal, V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)
Brooks, R.L.: On colouring the nodes of a network. Proc. Camb. Philos. Soc. 37, 194–197 (1941)
Caro, Y.: New results on the independence number. Technical Report 05–79, Tel-Aviv University (1979)
Chartrand, G., Harary, F.: Graphs with prescribed connectivities. In: Theory of Graphs, pp. 61–63. Academic Press, New York (1968)
Chartrand, G., Kapoor, S.F., Kronk, H.V.: A sufficient condition for \(n\)-connectedness of graphs. Mathematika 15, 51–52 (1968)
Chartrand, G., Kronk, H.V.: The point arboricity of planar graphs. J. Lond. Math. Soc. 44, 612–616 (1969)
Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 5th edn. CRC Press, Boca Raton (2011)
Chen, C.: Binding number and toughness for matching extension. Discrete Math. 146, 303–306 (1995)
Chvátal, V.: On Hamilton’s ideals. J. Combin. Theory Ser. B 12, 163–168 (1972)
Chvátal, V.: Tough graphs and hamiltonian circuits. Discrete Math. 5, 215–228 (1973)
Cunningham, W.H.: Computing the binding number of a graph. Discrete Appl. Math. 27, 283–285 (1990)
Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. (3) 2, 69–81 (1952)
Egawa, Y., Enomoto, H.: Sufficient conditions for the existence of \(k\)-factors. In: Recent Studies in Graph Theory, pp. 96–105. Vishwa, Gulbarga (1989)
Gallai, T.: On directed paths and circuits. In: Theory of Graphs, pp. 115–118. Academic Press, New York (1968)
Hakimi, S.L., Schmeichel, E.F.: A note on the vertex arboricity of a graph. SIAM J. Discrete Math. 2, 64–67 (1989)
Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918)
Hoàng, C.T.: Hamiltonian degree conditions for tough graphs. Discrete Math. 142, 121–139 (1995)
Jung, H.A.: On maximal circuits in finite graphs. Ann. Discrete Math. 3, 129–144 (1978)
Kane, V.G., Mohanty, S.P.: Binding numbers, cycles and complete graphs. In: Combinatorics and Graph Theory. Lecture Notes in Mathematics, vol. 885, pp. 290–296. Springer, Berlin (1981)
Katerinis, P., Woodall, D.R.: Binding numbers of graphs and the existence of \(k\)-factors. Q. J. Math. Oxford Ser. (2) 38, 221–228 (1987)
Kriesell, M.: Degree sequences and edge connectivity. http://www.math.uni-hamburg.de/research/papers/hbm/hbm2007282 (2007) (preprint)
Kronk, H.V.: A note on \(k\)-path hamiltonian graphs. J. Combin. Theory 7, 104–106 (1969)
Las Vergnas, M.: Problèmes de Couplages et Problèmes Hamiltoniens en Théorie des Graphes. PhD Thesis, Université Paris VI—Pierre et Marie Curie (1972)
Lesniak, L.: On \(n\)-hamiltonian graphs. Discrete Math. 14, 165–169 (1976)
Lyle, J., Goddard, W.: The binding number of a graph and its cliques. Discrete Appl. Math. 157, 3336–3340 (2009)
Murphy, O.: Lower bounds on the stability number of graphs computed in terms of degrees. Discrete Math. 90, 207–211 (1991)
Nash-Williams, C.St.J.A.: Hamiltonian arcs and circuits. In: Recent Trends in Graph Theory. Lecture Notes in Mathematics, vol. 186, pp. 197–210. Springer, Berlin (1971)
Pósa, L.: A theorem concerning Hamilton lines. Magyar Tud. Akad. Mat. Kutató Int. Közl. 7, 225–226 (1962)
Rao, A.R.: The clique number of a graph with a given degree sequence. In: Proceedings of Symposium on Graph Theory. ISI Lecture Notes Series, vol. 4, pp. 251–267. (1979)
Robertshaw, A.M., Woodall, D.R.: Triangles and neighbourhoods of independent sets in graphs. J. Combin. Theory Ser. B 80, 122–129 (2000)
Shi, R.: The binding number of a graph and its pancyclism. Acta Math. Appl. Sinica (English Series) 3, 257–269 (1987)
Szekeres, G., Wilf, H.S.: An inequality for the chromatic number of a graph. J. Combin. Theory 4, 1–3 (1968)
Tutte, W.T.: A short proof of the factor theorem for finite graphs. Can. J. Math. 6, 347–352 (1954)
Wei, V.K.: A lower bound on the stability number of a simple graph. Technical Memorandum TM 81–11217-9, Bell Laboratories (1981)
Welsh, D.J.A., Powell, M.B.: An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput. J. 10, 85–86 (1967)
West, D.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)
Wilf, H.S.: The eigenvalues of a graph and its chromatic number. J. Lond. Math. Soc. 42, 330–332 (1967)
Woodall, D.R.: The binding number of a graph and its Anderson number. J. Combin. Theory Ser. B 15, 225–255 (1973)
Woodall, D.R.: A sufficient condition for hamiltonian circuits. J. Combin. Theory Ser. B 25, 184–186 (1978)
Woodall, D.R.: \(k\)-factors and neighbourhoods of independent sets in graphs. J. Lond. Math. Soc. (2) 41, 385–392 (1990)
Yin, J.-H., Guo, J.-Y.: Forcibly \(k\)-edge-connected graphic sequences (to appear, 2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bauer, D., Broersma, H.J., van den Heuvel, J. et al. Best Monotone Degree Conditions for Graph Properties: A Survey. Graphs and Combinatorics 31, 1–22 (2015). https://doi.org/10.1007/s00373-014-1465-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-014-1465-6