[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Salinity stress severely affects plant growth and development causing crop loss worldwide. Suaeda asparagoides is a salt-marsh euhalophyte widely distributed in southwestern foreshore of Korea. To isolate salt tolerance genes from S. asparagoides, we constructed a cDNA library from leaf tissues of S. asparagoides that was treated with 200 mM NaCl. A total of 1,056 clones were randomly selected for EST sequencing, and 932 of them produced readable sequence. By sequence analysis, we identified 538 unigenes and registered each in National Center for Biotechnology Information. The 80 salt stress related genes were selected to study their differential expression. Reverse transcription-PCR and Northern blot analysis revealed that 23 genes were differentially expressed under the high salinity stress conditions in S. asparagoides. They are functionally diverse including transport, signal transduction, transcription factor, metabolism and stress associated protein, and unknown function. Among them dehydrin (SaDhn) and RNA binding protein (SaRBP1) were examined for their abiotic stress tolerance in yeast (Saccharomyces cerevisiae). Yeast overexpressing SaDhn and SaRBP1 showed enhanced tolerance to osmotic, freezing and heat shock stresses. This study provides the evidence that SaRBP1 and SaDhn from S. asparagoides exert abiotic stress tolerance in yeast. Information of salt stress related genes from S. asparagoides would contribute for the accumulating genetic resources to improve osmotic tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ardie SW, Nishiuchi S, Liu S, Takano T (2010) Ectopic expression of the K+ channel β subunits from Puccinellia tenuiflora (KPutB1) and rice (KOB1) alters K+ homeostasis of yeast and Arabidopsis. Mol Biotechnol 48:76–86

    Article  Google Scholar 

  • Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 8:287–300

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchannan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologist, Rockville, pp 1158–1249

    Google Scholar 

  • Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615–621

    Article  PubMed  CAS  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Luo K, Li Z, Yang Y (2008) Molecular cloning and characterization of a mitochondrial dicarboxylate/tricarboxylate transporter gene in Citrus junos response to aluminum stress. Mitochondrial DNA 19(4):376–384

    PubMed  CAS  Google Scholar 

  • Dure L III (1993) Structural motifs in LEA proteins. In: Close TJ (ed) Plant responses to cellular dehydration during environmental stress. American Society of Plant Physiologist, Rockville, pp 91–103

    Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Fukamatsu Y, Yabe N, Hasunuma K (2003) Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol 44:982–989

    Article  PubMed  CAS  Google Scholar 

  • Gellissen G, Melber K, Janowicz ZA, Dahlems UM, Weydemann U, Piontek M, Strasser AW, Hollenberg CP (1992) Heterologous protein production in yeast. Antonie Van Leeuwenhoek 62:79–93

    Article  PubMed  CAS  Google Scholar 

  • González-García MP, Rodríguez D, Nicolás C, Rodríguez PL, Nicolás G, Lorenzo O (2003) Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination. Plant Physiol 133:135–144

    Article  PubMed  Google Scholar 

  • Gueguen Y, Cadoret JP, Flament D, Barreau-Roumiguière C, Girardot AL, Garnier J, Hoareau A, Bachère E, Escoubas JM (2003) Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene 303:139–145

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Terashima TF, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  • Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  PubMed  CAS  Google Scholar 

  • Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga G, Schneider K, Salamini F, Bartels D (1992) Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20:555–558

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga G, Cushman MAF, Cushman JC (2006) An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Sci 170:1173–1184

    Article  CAS  Google Scholar 

  • Jha B, Agarwal PK, Reddy PS, Lal S, Sopory SK, Reddy MK (2009) Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis. Genes Genet Syst 84:111–120

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Plaha P, Park JY, Hong CP, Lee IS, Yang ZH, Jiang GB, Kwak SS, Liu SK, Lee JS, Kim YA, Lim YP (2006) Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil. Plant Sci 170:1081–1086

    Article  CAS  Google Scholar 

  • Kore-eda S, Cushman MK, Akselrod I, Bufford D, Fredrickson M, Clark E, Cushman JC (2004) Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene 341:83–92

    Article  PubMed  Google Scholar 

  • Lång V (1993) The role ABA and ABA-induced gene expression in cold acclimation of Arabidopsis thaliana. Dissertation, Swedish University of Agricultural Sciences

  • Landsberger M, Lorković ZJ, Oelműller R (2002) Molecular characterization of nucleus-localized RNA-binding proteins from higher plants. Plant Mol Biol 48:413–421

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wang Y, Jiang J, Liu G, Gao C, Yang C (2009) Identification of genes responsive to salt stress on Tamarix hispida roots. Gene 433:65–71

    Article  PubMed  CAS  Google Scholar 

  • Lorkovíc ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–236

    Article  PubMed  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    Article  PubMed  CAS  Google Scholar 

  • Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor Appl Genet 110:416–424

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran PL-S (2009) In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean. DNA Res 16:353–369

    Article  PubMed  CAS  Google Scholar 

  • Monroe-Augustus M, Zolman BK, Bartel B (2003) IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 15:2979–2991

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Cramer GR, Ball MC (1999) Interactions between rising CO2, soil salinity, and plant growth. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic Press, San Diego, pp 139–167

    Google Scholar 

  • Nishiuchi S, Fujihara K, Liu S, Takano T (2010) Analysis of expressed sequence tags from a NaHCO3-treated alkali-tolerant plant, Chloris virgata. Plant Physiol Biochem 48:247–255

    Article  PubMed  CAS  Google Scholar 

  • Swire-Clark GA, Marcotte WR Jr (1999) The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol 39:117–128

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li P, Fredricksen M, Gong Z, Kim CS, Zhang C, Bohnert HJ, Zhu J-K, Bressan RA, Hasegawa PM, Zhao Y, Zhang H (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166:609–616

    Article  CAS  Google Scholar 

  • Wang YC, Yang CP, Liu GF, Jiang J, Wu JH (2006) Generation and analysis of expressed sequence tags from a cDNA library of Tamarix androssowii. Plant Sci 170:28–36

    Article  CAS  Google Scholar 

  • Zhang L, Ohta A, Takagi M, Imai R (2000) Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J Biochem (Tokyo) 127:611–616

    CAS  Google Scholar 

  • Zhang L, Ma X-L, Zhang Q, Ma C-L, Wang P-P, Sun Y-F, Zhao Y-X, Zhang H (2001) Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library. Gene 267:193–200

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Genetic Evaluation of Important Biological Resources from National Institute of Biological Resources (NIBR, 2011), the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ007970) of Rural Development Administration and Basic Science Research Program through the National Research Foundation of Korea (KRF) funded by the Ministry of Education, Science and Technology (KRF-2009-0068370 and -2009-0074413), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai-Heon Lee.

Additional information

Communicated by J. R. Liu.

S. Ayarpadikannan and E. Chung contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayarpadikannan, S., Chung, E., Cho, CW. et al. Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides . Plant Cell Rep 31, 35–48 (2012). https://doi.org/10.1007/s00299-011-1137-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1137-4

Keywords

Navigation