Abstract
We derive rigorous results describing the asymptotic dynamics of a discrete time model of spiking neurons introduced in Soula et al. (Neural Comput. 18, 1, 2006). Using symbolic dynamic techniques we show how the dynamics of membrane potential has a one to one correspondence with sequences of spikes patterns (“raster plots”). Moreover, though the dynamics is generically periodic, it has a weak form of initial conditions sensitivity due to the presence of a sharp threshold in the model definition. As a consequence, the model exhibits a dynamical regime indistinguishable from chaos in numerical experiments.
Similar content being viewed by others
References
Bak, P.: How Nature Works: the Science of Seld-Organized Criticality. Springer (1996), Oxford University Press (1997)
Blanchard Ph., Cessac B. and Krüger T. (1997). A dynamical system approach to SOC models of Zhang’s type. J. Stat. Phys. 88: 307–318
Blanchard Ph., Cessac B. and Krüger T. (2000). What can one learn about self-organized criticality from dynamical system theory?. J. Stat. Phys. 98: 375–404
Cessac B., Blanchard Ph., Krüger T. and Meunier J.L. (2004). J. Stat. Phys. 115(516): 1283–1326
Brunel N. and Hakim V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11: 1621–1671
Cessac B., Doyon B., Quoy M. and Samuelides M. (1994). Mean-field equations, bifurcation map and route to chaos in discrete time neural networks. Physica D 74: 24–44
Cessac B. (1994). Occurence of chaos and AT line in random neural networks. Europhys. Lett. 26(8): 577–582
Cessac B. (1995). Increase in complexity in random neural networks. J. de Physique I (France) 5: 409–432
Cessac, B., Mazet, O., Samuelides, M., Soula, H.: Mean field theory for random recurrent spiking neural networks. NOLTA’05 (Non Linear Theory and its Applications) October 18–21, 2005, Brugge, Belgium
Cessac, B., Samuelides, M.: From Neuron to Neural Networks dynamics. EPJ Special Topics Topics in Dynamical Neural Networksá: From Large Scale Neural Networks to Motor Control and Vision (2007)
Cessac B. and Sepulchre J.A. (2004). Stable resonances and signal propagation in a chaotic network of coupled units. Phys. Rev. E 70: 056111
Cessac B. and Sepulchre J.A. (2006). Transmitting a signal by amplitude modulation in a chaotic network. Chaos 16: 013104
Cessac, B., Sepulchre, J.A.: Linear Response in a class of simple systems far from equilibrium. Physica D 225(1): 13–28
Cessac, B., Viéville, T.: Biological plausibility of discrete time spiking neural networks (submited, 2007)
Cessac, B., Touboul, J.: A discrete time neural network model with spiking neurons: the case of random synapses (in preparation)
Chernov, N., Markarian, R.: Chaotic Billiards. American Mathematical Society, Providence (2006)
Coutinho R., Fernandez B., Lima R. and Meyroneinc A. (2006). Discrete time piecewise affine models of genetic regulatory networks. J. Math. Biol. 52: 524–570
Dauce E., Quoy M., Cessac B., Doyon B. and Samuelides M. (1998). Self- Organization and Dynamics reduction in recurrent networks: stimulus presentation and learning. Neural Netw 11: 521–533
Derrida B. (1987). Dynamical phaste transition in non-symmetric spin glasses. J. Phys. A Math. Gen. 20: 721–725
Derrida B. and Flyvbjerg H. (1986). Multivalley structure in Kauffman’s model: analogy with spin glasses. J. Phys. A19: L1003–L1008
Derrida B. and Pomeau Y. (1986). Random networks of automata: a simple annealed approximation. Europhys. Lett. 1: 45–49
Eckmann J.P. and Ruelle D. (1985). Ergodic Theory of Strange attractors. Rev. Mod. Phys. 57: 617
Farcot, E.: Etude d’une classe d’équations différentielles affines par morceaux modélisant des réseaux de régulation biologique. Thèse de Doctorat, Grenoble, France (2005)
Faugeras, O., Papadopoulo, T., Touboul, J., Bossy, M., Tanre, E., Talay, D.: The Statistics of Spikes Trains for Some Simple Types of Neuron Models. In: Proceedings of the NeuroComp 2006 Conference, Pont-à-Mousson, France (2006)
Freidlin M.I. and Wentzell A.D. (1998). Random Perturbations of Dynamical Systems. Springer, New York
Gerstner W. and Kistler W.M. (2002). Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge
Guckenheimer J. and Holmes Ph. (1983). Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. Springer, Heidelberg
Guikhman, I., Skorhokod, A.: Introduction à la théorie des processus aléatoires. Editions Mir, Moscou (1980)
Hodgkin A.L. and Huxley A.F. (1952). Current carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116: 449–472
Hodgkin A.L. and Huxley A.F. (1952). A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J. Physiol. (Lond.) 117: 500–544
Hunt B.R., Sauer T. and Yorke J.A. (1992). Prevalence: a translation-invariant ‘almost every’ on infinite-dimensional spaces. Bull. Am. Math. Soc. 27: 217–238
Izhikevich E.M. (2003). Simple model of spiking neurons. IEEE Trans Neural Netw 14: 1569–572
Kauffman, S.A.: J. Theor. Biol. 22 (1969)
Katok A. and Hasselblatt B. (1998). Introduction to the Modern Theory of Dynamical Systems. Kluwer, Dordrecht
Keller G. (1998). Equilibrium states in ergodic theory. Cambridge University Press, Cambridge
Kruglikov, B., Rypdal, M.: Entropy via multiplicity. arXivmath.DS/0505019
Kruglikov, B., Rypdal, M.: A piece-wise affine contracting map with positive entropy. arXiv math.DS/0504187
Langton C.G. (1990). Computation at the edge of chaos. Physica D 42: 12–37
Lima R. and Ugalde E. (2006). Dynamical complexity of discrete time regulatory networks. Nonlinearity 19: 237–259
Maass W. and Bishop C. (1998). Pulsed Neural Networks. MIT Press, Cambridge
Mézard M., Parisi G. and Virasoro M.A. (1987). Spin-glass theory and beyond. World scientific, Singapore
Packard, N.: Adaptation towards the edge of chaos. In: Kelso, J.A.S, Mandell, A.J., Shlesinger, M.F. (eds.) Dynamic Patterns in Complex Systems. pp. 293–301. World Scientific, Singapore (1988)
Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Collection Asterisque 187–188, Société Mathématique de France (1990)
Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes: exploring the neural code. MIT Press (1999)
Roxin N.B. and Hansel D. (2005). The role of delays in shaping the spatio-temporal dynamics of neuronal activity in large networks. Phys. Rev. Lett. 94: 238103
Rudolph M. and Destexhe A. (2006). Analytical integrate and fire neuron models with conductance-based dynamics for event driven simulation strategies. Neural Comput. 18: 2146–2210
Sinai Ya.G. (1972). Gibbs measures in ergodic theory. Russ. Math. Surv. 27(4): 21–69
Ruelle D. (1978). Thermodynamic Formalism. Addison-Wesley, Reading
Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lect. Notes. in Math., vol. 470. Springer, Berlin (1975)
Sherrington, D.: An introduction and overview is given of the theory of spin glasses and its application. cond-mat/9806289
Sherrington D. and Kirkpatrick S. (1975). Solvable model of spin glass. Phys. Rev. Lett. 35(26): 1792
Samuelides, M., Cessac, B.: Random recurrent neural Networks. review paper, to appear in, topics in neural networks. Eur. Phys. J. (topical issue), Springer, Heidelberg (2006)
Schneidman, E., Berry, M.J., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 04701, vol. 440 (2006)
Soula, H.: Dynamique et plasticité dans les réseaux de neurones à impulsions. thèse de doctorat, INSA Lyon (2005)
Soula H., Beslon G. and Mazet O. (2006). Spontaneous dynamics of assymmetric random recurrent spiking neural networks. Neural Comput. 18: 1
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cessac, B. A discrete time neural network model with spiking neurons. J. Math. Biol. 56, 311–345 (2008). https://doi.org/10.1007/s00285-007-0117-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00285-007-0117-3