[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Pathological and protective immunity to Pneumocystis infection

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Pneumocystis jirovecii is a common opportunistic infection in the HIV-positive population and is re-emerging as a growing clinical concern in the HIV-negative immunosuppressed population. Newer targeted immunosuppressive therapies and the discovery of rare genetic mutations have furthered our understanding of the immunity required to clear Pneumocystis infection. The immune system can also mount a pathologic response against Pneumocystis following removal of immunosuppression and result in severe damage to the host lung. The current review will examine the most recent epidemiologic studies about the incidence of Pneumocystis in the HIV-positive and HIV-negative populations in the developing and developed world and will detail methods of diagnosis for Pneumocystis pneumonia. Finally, this review aims to summarize the known mediators of immunity to Pneumocystis and detail the pathologic immune response leading to Pneumocystis-related immune reconstitution inflammatory syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chabe M et al (2011) Pneumocystis: from a doubtful unique entity to a group of highly diversified fungal species. FEMS Yeast Res 11:2–17

    Article  CAS  PubMed  Google Scholar 

  2. Centers for Disease C (1981) Pneumocystis pneumonia—Los Angeles. MMWR Morb Mortal Wkly Rep 30:250–252

    Google Scholar 

  3. Morris A et al (2004) Current epidemiology of Pneumocystis pneumonia. Emerg Infect Dis 10:1713–1720

    Article  PubMed Central  PubMed  Google Scholar 

  4. Walzer PD et al (2008) Early predictors of mortality from Pneumocystis jirovecii pneumonia in HIV-infected patients: 1985–2006. Clin Infect Dis : Off Publ Infect Diseases Soc Am 46:625–633

    Article  Google Scholar 

  5. Antiretroviral Therapy, Cohort C et al (2009) Variable impact on mortality of AIDS-defining events diagnosed during combination antiretroviral therapy: not all AIDS-defining conditions are created equal. Clin Infect Dis 48:1138–1151

    Article  Google Scholar 

  6. Huang L et al (2011) HIV-associated Pneumocystis pneumonia. Proc Am Thorac Soc 8:294–300

    Article  PubMed Central  PubMed  Google Scholar 

  7. Malin AS et al (1995) Pneumocystis carinii pneumonia in Zimbabwe. Lancet 346:1258–1261

    Article  CAS  PubMed  Google Scholar 

  8. Ruffini DD, Madhi SA (2002) The high burden of Pneumocystis carinii pneumonia in African HIV-1-infected children hospitalized for severe pneumonia. AIDS 16:105–112

    Article  PubMed  Google Scholar 

  9. Chakaya JM et al (2003) Pneumocystis carinii pneumonia in HIV/AIDS patients at an urban district hospital in Kenya. East Afr Med J 80:30–35

    CAS  PubMed  Google Scholar 

  10. Tansuphasawadikul S et al (2005) Clinical features, etiology and short term outcomes of interstitial pneumonitis in HIV/AIDS patients. Southeast Asian J Trop Med Public Health 36:1469–1478

    PubMed  Google Scholar 

  11. Nissapatorn V et al (2004) Spectrum of opportunistic infections among HIV-infected patients in Malaysia. Southeast Asian J Trop Med Public Health 35(Suppl 2):26–32

    PubMed  Google Scholar 

  12. Udwadia ZF et al (2005) Pneumocystis carinii pneumonia in HIV infected patients from Mumbai. J Assoc Physicians India 53:437–440

    CAS  PubMed  Google Scholar 

  13. Panizo MM et al (2008) Pneumocystosis in Venezuelan patients: epidemiology and diagnosis (2001–2006). Rev Iberoam Micol 25:226–231

    Article  PubMed  Google Scholar 

  14. Chernilo S et al (2005) Lung diseases among HIV infected patients admitted to the “Instituto Nacional del Torax” in Santiago, Chile. Rev Med Chil 133:517–524

    Article  PubMed  Google Scholar 

  15. Mikaelsson L et al (2006) Pneumocystis pneumonia—a retrospective study 1991–2001 in Gothenburg, Sweden. J Infect 53:260–265

    Article  PubMed  Google Scholar 

  16. Maini R et al (2013) Increasing Pneumocystis pneumonia, England, UK, 2000–2010. Emerg Infect Dis 19:386–392

    Article  PubMed Central  PubMed  Google Scholar 

  17. Carmona EM, Limper AH (2011) Update on the diagnosis and treatment of Pneumocystis pneumonia. Ther Adv Respir Dis 5:41–59

    Article  CAS  PubMed  Google Scholar 

  18. Catherinot E et al (2010) Pneumocystis jirovecii Pneumonia. Infect Dis Clin N Am 24:107–138

    Article  Google Scholar 

  19. Goto N, Oka S (2011) Pneumocystis jirovecii pneumonia in kidney transplantation. Transpl Infect Dis 13:551–558

    Article  CAS  PubMed  Google Scholar 

  20. Mussini C et al (2008) Patients presenting with AIDS in the HAART era: a collaborative cohort analysis. AIDS 22:2461–2469

    Article  PubMed  Google Scholar 

  21. Neff RT et al (2009) Analysis of USRDS: incidence and risk factors for Pneumocystis jiroveci pneumonia. Transplantation 88:135–141

    Article  PubMed  Google Scholar 

  22. Sepkowitz KA (2002) Opportunistic infections in patients with and patients without Acquired Immunodeficiency Syndrome. Clin Infect Dis 34:1098–1107

    Article  PubMed  Google Scholar 

  23. Wolfe RA et al (2010) Trends in organ donation and transplantation in the United States, 1999–2008. Am J Transplant 10:961–972

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez M, Fishman JA (2004) Prevention of infection due to Pneumocystis spp. in human immunodeficiency virus-negative immunocompromised patients. Clin Microbiol Rev 17:770–782, table of contents

    Article  PubMed Central  PubMed  Google Scholar 

  25. Louie GH et al (2010) Trends in hospitalizations for Pneumocystis jiroveci pneumonia among patients with rheumatoid arthritis in the US: 1996–2007. Arthritis Rheum 62:3826–3827

    Article  PubMed Central  PubMed  Google Scholar 

  26. Stamp LK, Hurst M (2010) Is there a role for consensus guidelines for P. jiroveci pneumonia prophylaxis in immunosuppressed patients with rheumatic diseases? J Rheumatol 37:686–688

    Article  PubMed  Google Scholar 

  27. Falagas ME et al (2007) Infection-related morbidity and mortality in patients with connective tissue diseases: a systematic review. Clin Rheumatol 26:663–670

    Article  PubMed  Google Scholar 

  28. Poppers DM, Scherl EJ (2008) Prophylaxis against Pneumocystis pneumonia in patients with inflammatory bowel disease: toward a standard of care. Inflamm Bowel Dis 14:106–113

    Article  PubMed  Google Scholar 

  29. De Castro N et al (2005) Occurrence of Pneumocystis jiroveci pneumonia after allogeneic stem cell transplantation: a 6-year retrospective study. Bone Marrow Transplant 36:879–883

    Article  PubMed  Google Scholar 

  30. Martin-Garrido I et al (2013) Pneumocystis pneumonia in patients treated with rituximab. Chest 144:258–265

    Article  CAS  PubMed  Google Scholar 

  31. Monnet X et al (2008) Critical care management and outcome of severe Pneumocystis pneumonia in patients with and without HIV infection. Crit Care 12:R28

    Article  PubMed Central  PubMed  Google Scholar 

  32. Mori S, Sugimoto M (2012) Pneumocystis jirovecii infection: an emerging threat to patients with rheumatoid arthritis. Rheumatology (Oxford) 51:2120–2130

    Article  Google Scholar 

  33. Thomas CF Jr, Limper AH (2004) Pneumocystis pneumonia. N Engl J Med 350:2487–2498

    Article  CAS  PubMed  Google Scholar 

  34. Kanne JP et al (2012) Pneumocystis jiroveci pneumonia: high-resolution CT findings in patients with and without HIV infection. AJR Am J Roentgenol 198:W555–W561

    Article  PubMed  Google Scholar 

  35. Wakefield AE et al (1990) Detection of Pneumocystis carinii with DNA amplification. Lancet 336:451–453

    Article  CAS  PubMed  Google Scholar 

  36. Reid AB et al (2011) Pneumocystis jirovecii pneumonia in non-HIV-infected patients: new risks and diagnostic tools. Curr Opin Infect Dis 24:534–544

    Article  CAS  PubMed  Google Scholar 

  37. Flori P et al (2004) Comparison between real-time PCR, conventional PCR and different staining techniques for diagnosing Pneumocystis jiroveci pneumonia from bronchoalveolar lavage specimens. J Med Microbiol 53:603–607

    Article  CAS  PubMed  Google Scholar 

  38. Desmet S et al (2009) Serum (1–3)-beta-D-glucan as a tool for diagnosis of Pneumocystis jirovecii pneumonia in patients with human immunodeficiency virus infection or hematological malignancy. J Clin Microbiol 47:3871–3874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Nakamura H et al (2009) Clinical utility of serum beta-D-glucan and KL-6 levels in Pneumocystis jirovecii pneumonia. Intern Med 48:195–202

    Article  PubMed  Google Scholar 

  40. Aliouat-Denis CM et al (2009) The Pneumocystis life cycle. Mem Inst Oswaldo Cruz 104:419–426

    Article  PubMed  Google Scholar 

  41. Cushion MT et al (2010) Echinocandin treatment of pneumocystis pneumonia in rodent models depletes cysts leaving trophic burdens that cannot transmit the infection. PLoS ONE 5:e8524

    Article  PubMed Central  PubMed  Google Scholar 

  42. Itatani CA (1994) Ultrastructural demonstration of a pore in the cyst wall of Pneumocystis carinii. J Parasitol 80:644–648

    Article  CAS  PubMed  Google Scholar 

  43. Cushion MT (2004) Pneumocystis: unraveling the cloak of obscurity. Trends Microbiol 12:243–249

    Article  CAS  PubMed  Google Scholar 

  44. Martinez A et al (2011) Ploidy of cell-sorted trophic and cystic forms of Pneumocystis carinii. PLoS ONE 6:e20935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Martinez A et al (2013) Growth and airborne transmission of cell-sorted life cycle stages of Pneumocystis carinii. PLoS ONE 8:e79958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Schildgen V et al. 2014. Pneumocystis jirovecii can be productively cultured in differentiated CuFi-8 airway cells. MBio 5

  47. Edman JC et al (1988) Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature 334:519–522

    Article  CAS  PubMed  Google Scholar 

  48. Stringer SL et al (1989) Sequence from ribosomal RNA of Pneumocystis carinii compared to those of four fungi suggests an ascomycetous affinity. J Protozool 36:14S–16S

    Article  CAS  PubMed  Google Scholar 

  49. Aliouat-Denis CM et al (2008) Pneumocystis species, co-evolution and pathogenic power. Infect Genet Evol 8:708–726

    Article  PubMed  Google Scholar 

  50. Frenkel JK (1976) Pneumocystis jiroveci n. sp. from man: morphology, physiology, and immunology in relation to pathology. Natl Cancer Inst Monogr 43:13–30

    CAS  PubMed  Google Scholar 

  51. Keely SP et al (2003) Evolution and speciation of Pneumocystis. J Eukaryot Microbiol 50(Suppl):624–626

    Article  CAS  PubMed  Google Scholar 

  52. Cisse OH et al (2012) De novo assembly of the Pneumocystis jirovecii genome from a single bronchoalveolar lavage fluid specimen from a patient. MBio 4:e00428–12

    Article  PubMed Central  PubMed  Google Scholar 

  53. Kluge RM et al (1978) Combination of pentamidine and trimethoprim-sulfamethoxazole in therapy of Pneumocystis carinii pneumonia in rats. Antimicrob Agents Chemother 13:975–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Chandler FW et al (1979) Pneumocystis pneumonia. Animal model: Pneumocystis cartinii pneumonia in the immunosuppressed rat. Am J Pathol 95:571–574

    PubMed Central  PubMed  Google Scholar 

  55. Hughes WT et al (1973) Pneumocystis carinii pneumonitis in children with malignancies. J Pediatr 82:404–415

    Article  CAS  PubMed  Google Scholar 

  56. Phair J et al (1990) The risk of Pneumocystis carinii pneumonia among men infected with human immunodeficiency virus type 1. Multicenter AIDS Cohort Study Group. N Engl J Med 322:161–165

    Article  CAS  PubMed  Google Scholar 

  57. Shellito J et al (1990) A new model of Pneumocystis carinii infection in mice selectively depleted of helper T lymphocytes. J Clin Invest 85:1686–1693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Rudner XL et al (2007) Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun 75:3055–3061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Milner JD et al (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Mogensen TH (2013) STAT3 and the Hyper-IgE syndrome: clinical presentation, genetic origin, pathogenesis, novel findings and remaining uncertainties. JAKSTAT 2:e23435

    PubMed Central  PubMed  Google Scholar 

  61. Crotty S (2011) Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29:621–663

    Article  CAS  PubMed  Google Scholar 

  62. Kotlarz D et al (2013) Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med 210:433–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Lund FE et al (2006) B cells are required for generation of protective effector and memory CD4 cells in response to Pneumocystis lung infection. J Immunol 176:6147–6154

    Article  CAS  PubMed  Google Scholar 

  64. Al-Saud BK et al (2013) Clinical, immunological, and molecular characterization of hyper-IgM syndrome due to CD40 deficiency in eleven patients. J Clin Immunol 33:1325–1335

    Article  CAS  PubMed  Google Scholar 

  65. Tsai HY et al. 2012. X-linked hyper-IgM syndrome with CD40LG mutation: two case reports and literature review in Taiwanese patients. J Microbiol Immunol Infect

  66. Costa-Carvalho BT et al (2011) Pulmonary complications in patients with antibody deficiency. Allergol Immunopathol (Madr) 39:128–132

    Article  Google Scholar 

  67. Zheng M et al (2001) CD4+ T cell-independent vaccination against Pneumocystis carinii in mice. J Clin Invest 108:1469–1474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Gigliotti F et al (2002) Passive intranasal monoclonal antibody prophylaxis against murine Pneumocystis carinii pneumonia. Infect Immun 70:1069–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Limper AH et al (1997) The role of alveolar macrophages in Pneumocystis carinii degradation and clearance from the lung. J Clin Invest 99:2110–2117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Lasbury ME et al (2007) Polyamine-mediated apoptosis of alveolar macrophages during Pneumocystis pneumonia. J Biol Chem 282:11009–11020

    Article  CAS  PubMed  Google Scholar 

  71. Steele C et al (2003) Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J Exp Med 198:1677–1688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Wells J et al (2006) Complement and Fc function are required for optimal antibody prophylaxis against Pneumocystis carinii pneumonia. Infect Immun 74:390–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. McAllister F et al (2004) T cytotoxic-1 CD8+ T cells are effector cells against pneumocystis in mice. J Immunol 172:1132–1138

    Article  CAS  PubMed  Google Scholar 

  74. Mori S, Levin P (2009) A brief review of potential mechanisms of immune reconstitution inflammatory syndrome in HIV following antiretroviral therapy. Int J STD AIDS 20:447–452

    Article  CAS  PubMed  Google Scholar 

  75. Martin-Blondel G et al (2012) Pathogenesis of the immune reconstitution inflammatory syndrome in HIV-infected patients. Curr Opin Infect Dis 25:312–320

    Article  CAS  PubMed  Google Scholar 

  76. Muller M et al (2010) Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis 10:251–261

    Article  PubMed Central  PubMed  Google Scholar 

  77. Achenbach CJ et al (2012) Paradoxical immune reconstitution inflammatory syndrome in HIV-infected patients treated with combination antiretroviral therapy after AIDS-defining opportunistic infection. Clin Infect Dis 54:424–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Novak RM et al (2012) Immune reconstitution inflammatory syndrome: incidence and implications for mortality. AIDS 26:721–730

    Article  CAS  PubMed  Google Scholar 

  79. Grant PM et al (2010) Risk factor analyses for immune reconstitution inflammatory syndrome in a randomized study of early vs. deferred ART during an opportunistic infection. PLoS ONE 5:e11416

    Article  PubMed Central  PubMed  Google Scholar 

  80. Jagannathan P et al (2009) Life-threatening immune reconstitution inflammatory syndrome after Pneumocystis pneumonia: a cautionary case series. AIDS 23:1794–1796

    Article  PubMed  Google Scholar 

  81. Zolopa A et al (2009) Early antiretroviral therapy reduces AIDS progression/death in individuals with acute opportunistic infections: a multicenter randomized strategy trial. PLoS ONE 4:e5575

    Article  PubMed Central  PubMed  Google Scholar 

  82. Wright TW et al (1997) Analysis of cytokine mRNA profiles in the lungs of Pneumocystis carinii-infected mice. Am J Respir Cell Mol Biol 17:491–500

    Article  CAS  PubMed  Google Scholar 

  83. Wright TW et al (1999) Immune-mediated inflammation directly impairs pulmonary function, contributing to the pathogenesis of Pneumocystis carinii pneumonia. J Clin Invest 104:1307–1317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Bhagwat SP et al (2010) Anti-CD3 antibody decreases inflammation and improves outcome in a murine model of Pneumocystis pneumonia. J Immunol 184:497–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Gigliotti F et al (2006) Sensitized CD8+ T cells fail to control organism burden but accelerate the onset of lung injury during Pneumocystis carinii pneumonia. Infect Immun 74:6310–6316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Swain SD et al (2006) CD8 T cells modulate CD4 T-cell and eosinophil-mediated pulmonary pathology in pneumocystis pneumonia in B-cell-deficient mice. Am J Pathol 168:466–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Hori S et al (2002) CD25+ CD4+ regulatory T cells suppress CD4+ T cell-mediated pulmonary hyperinflammation driven by Pneumocystis carinii in immunodeficient mice. Eur J Immunol 32:1282–1291

    Article  CAS  PubMed  Google Scholar 

  88. Ruan S et al (2002) Local delivery of the viral interleukin-10 gene suppresses tissue inflammation in murine Pneumocystis carinii infection. Infect Immun 70:6107–6113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. McKinley L et al (2006) Regulatory T cells dampen pulmonary inflammation and lung injury in an animal model of pneumocystis pneumonia. J Immunol 177:6215–6226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Wright TW et al (2001) Pulmonary inflammation disrupts surfactant function during Pneumocystis carinii pneumonia. Infect Immun 69:758–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Atochina-Vasserman EN et al (2009) Immune reconstitution during Pneumocystis lung infection: disruption of surfactant component expression and function by S-nitrosylation. J Immunol 182:2277–2287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Linke MJ et al (2013) Characterization of a distinct host response profile to Pneumocystis murina asci during clearance of pneumocystis pneumonia. Infect Immun 81:984–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Ricks D et al. 2013. Dectin immunoadhesins and Pneumocystis pneumonia. Infect Immun

  94. Bellamy RJ. 2008. HIV: treating Pneumocystis pneumonia (PCP). Clin Evid (Online) 2008

  95. Helweg-Larsen J et al (2009) Clinical efficacy of first- and second-line treatments for HIV-associated Pneumocystis jirovecii pneumonia: a tri-centre cohort study. J Antimicrob Chemother 64:1282–1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Jick H (1982) Adverse reactions to trimethoprim-sulfamethoxazole in hospitalized patients. Rev Infect Dis 4:426–428

    Article  CAS  PubMed  Google Scholar 

  97. Phillips E, Mallal S (2007) Drug hypersensitivity in HIV. Curr Opin Allergy Clin Immunol 7:324–330

    Article  PubMed  Google Scholar 

  98. Hirsch HH et al (2004) Immune reconstitution in HIV-infected patients. Clin Infect Dis 38:1159–1166

    Article  PubMed  Google Scholar 

  99. Barry SM et al (2002) Immune reconstitution pneumonitis following Pneumocystis carinii pneumonia in HIV-infected subjects. HIV Med 3:207–211

    Article  CAS  PubMed  Google Scholar 

  100. Koval CE et al (2002) Immune reconstitution syndrome after successful treatment of Pneumocystis carinii pneumonia in a man with human immunodeficiency virus type 1 infection. Clin Infect Dis 35:491–493

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay K. Kolls.

Additional information

This article is a contribution to the special issue on Immunopathology of Fungal Diseases - Guest Editor: Jean-Paul Latge

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eddens, T., Kolls, J.K. Pathological and protective immunity to Pneumocystis infection. Semin Immunopathol 37, 153–162 (2015). https://doi.org/10.1007/s00281-014-0459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0459-z

Keywords

Navigation