[go: up one dir, main page]

Skip to main content

Advertisement

Log in

PdCYP51B, a new putative sterol 14α-demethylase gene of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Penicillium digitatum, causing green mold decay, is the most destructive postharvest pathogen of citrus fruits worldwide. The phenotypes and genotypes of 403 isolates of P. digitatum, collected from packing houses and supermarkets in Zhejiang, China, during 2000 to 2010, were characterized in terms of their imazalil sensitivity. The frequency of detected imazalil-resistant (IMZ-R) isolates increased from 2.1% in 2000 to 60–84% during 2005–2010. Only 6.5% and 4.5% of the collected IMZ-R isolates belong to the previously described IMZ-R1 and IMZ-R2 genotypes, respectively. To determine the resistance mechanism of the predominant and novel IMZ-R isolates of P. digitatum (termed IMZ-R3), genes PdCYP51B and PdCYP51C, homologous to the sterol 14α-demethylase encoded gene PdCYP51, were cloned from six IMZ-R3 and eight imazalil-sensitive (IMZ-S) isolates of P. digitatum. A unique 199-bp insertion was observed in the promoter region of PdCYP51B in all IMZ-R3 isolates examined but in none of the tested IMZ-S isolates. Further analysis by PCR confirmed that this insertion was present in all IMZ-R3 isolates but absent in IMZ-S, IMZ-R1, and IMZ-R2 isolates. Transcription levels of PdCYP51B in three IMZ-R3 isolates were found to be 7.5- to 13.6-fold higher than that in two IMZ-S isolates of P. digitatum. Introduction of another copy of PdCYP51B s (from IMZ-S) into an IMZ-S isolate decreased the sensitivity of P. digitatum to 14α-demethylation inhibitors (DMIs) only to a small extent, but introduction of a copy of PdCYP51B R (from IMZ-R3) dramatically increased the resistance level of P. digitatum to DMIs. Regarding PdCYP51C, no consistent changes in either nucleotide sequence or expression level were correlated with imazalil resistance among IMZ-R and IMZ-S isolates. Based on these results, we concluded that (1) the CYP51 family of P. digitatum contains the PdCYP51B and PdCYP51C genes, in addition to the known gene PdCYP51A (previously PdCYP51); (2) PdCYP51B is involved in DMI fungicide resistance; and (3) overexpression of PdCYP51B resulting from a 199-bp insertion mutation in the promoter region of PdCYP51B is responsible for the IMZ-R3 type of DMI resistance in P. digitatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albertini C, Gredt M, Leroux P (2003) Polymorphism of 14α-demethylase gene (CYP51) in the cereal eyespot fungi Tapesia acuformis and Tapesia yallundae. Eur J Plant Pathol 109:117–128

    Article  CAS  Google Scholar 

  • Bus VG, Bongers AJ, Risse LA (1991) Occurrence of Penicillium digitatum and P. italicum resistant to benomyl, thiabendazole, and imazalil on citrus fruit from different geographic origins. Plant Dis 75:1098–1100

    Article  CAS  Google Scholar 

  • Canas-Gutierrez GP, Angarita-Velasquez MJ, Restrepo-Florez JM, Rodriguez P, Moreno CX, Arango R (2009) Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Manag Sci 65:892–899

    Article  CAS  PubMed  Google Scholar 

  • Chen GJ, Zhang ZF, Jiang LY, Xu FS, Ma ZH, Li HY (2008) Real-time PCR assay for detection of the frequency of imazalil-resistance of Penicillium digitatum. Acta Phytopathol Sin 38:561–569

    Google Scholar 

  • Cools HJ, Ishii H, Butters JA, Hollomon DW (2002) Cloning and sequence analysis of the eburicol 14α-demethylase encoding gene (CYP51) from the Japanese pear scab fungus Venturia nashicola. J Phytopathol 150:444–450

    Article  CAS  Google Scholar 

  • Delye C, Laigret F, Corio-Costet MF (1997) A mutation in the 14α-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol 63:2966–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delye C, Bousset L, Corio-Costet MF (1998) PCR cloning and detection of point mutations in the eburicol 14α-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a “recalcitrant” fungus. Curr Genet 34:399–403

    Article  CAS  PubMed  Google Scholar 

  • Eckert JW (1987) Penicillium digitatum biotypes with reduced sensitivity to imazalil. Phytopathology 77:1728–1728

    Google Scholar 

  • Eckert JW, Sievert JR, Ratnayake M (1994) Reduction of imazalil effectiveness against citrus green mold in California packinghouses by resistant biotypes of Penicillium digitatum. Plant Dis 78:971–974

    Article  CAS  Google Scholar 

  • Espenshade PJ, Hughes AL (2007) Regulation of sterol synthesis in eukaryotes. Annu Rev Genet 41:401–427

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MED, Colombo AL, Paulsen I, Ren Q, Wortman J, Huang J, Goldman MHS, Goldman GH (2005) The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol 43:S313–S319

    Article  CAS  PubMed  Google Scholar 

  • Fraaije BA, Cools HJ, Kim SH, Motteram J, Clark WS, Lucas JA (2007) A novel substitution I381V in the sterol 14α-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Mol Plant Pathol 8:245–254

    Article  CAS  PubMed  Google Scholar 

  • Georgopapadakou NH, Walsh TJ (1994) Human mycoses: drugs and targets for emerging pathogens. Science 264:371–373

    Article  CAS  PubMed  Google Scholar 

  • Ghosoph JM, Schmidt LS, Margosan DA, Smilanick JL (2007) Imazalil resistance linked to a unique insertion sequence in the PdCYP51 promoter region of Penicillium digitatum. Postharvest Biol Technol 44:9–18

    Article  CAS  Google Scholar 

  • Hamamoto H, Hasegawa K, Nakaune R, Lee YJ, Makizumi Y, Akutsu K, Hibi T (2000) Tandem repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase gene (CYP51) in Penicillium digitatum. Appl Environ Microbiol 66:3421–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding PR (1976) A new imidazole derivative effective against postharvest decay of citrus by molds resistant to thiabendazole, benomyl, and 2-aminobutane. Plant Dis Rep 60:643–646

    CAS  Google Scholar 

  • Holmes GJ, Eckert JW (1999) Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology 89:716–721

    Article  CAS  PubMed  Google Scholar 

  • Jiang LY, Chen GQ, Shi PZ, Xu FS, Li HY (2010) Efficacy of pyrimethanil in controlling green mould of postharvest citrus. Chinese J Pestci Sci 12:149–154

    CAS  Google Scholar 

  • Kanetis L, Forster H, Adaskaveg JE (2007) Comparative efficacy of the new postharvest fungicides azoxystrobin, fludioxonil, and pyrimethanil for managing citrus green mold. Plant Dis 91:1502–1511

    Article  CAS  PubMed  Google Scholar 

  • Leroux P, Albertini C, Gautier A, Gredt M, Walker AS (2007) Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci 63:688–698

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xie Q, Song A (2003) Sequence comparison of CYP51 genes between imazalil-sensitive and imazalil-resistant strains of Penicillium digitatum. Mycosystema 22:153–156

    CAS  Google Scholar 

  • Liu X, Yu F, Schnabel G, Wu J, Wang Z, Ma Z (2011) Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genet Biol 48:113–123

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Yoshimura MA, Holtz BA, Michailides TJ (2005) Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California. Pest Manag Sci 61:449–457

    Article  CAS  PubMed  Google Scholar 

  • Macarisin D, Cohen L, Eick A, Rafael G, Belausov E, Wisniewski M, Droby S (2007) Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology 97:1491–1500

    Article  CAS  PubMed  Google Scholar 

  • Martel CM, Parker JE, Warrilow AGS, Rolley NJ, Kelly SL, Kelly DE (2010) Complementation of a Saccharomyces cerevisiae ERG11/CYP51 (sterol 14α-demethylase) doxycycline-regulated mutant and screening of the azole sensitivity of Aspergillus fumigatus isoenzymes CYP51A and CYP51B. Antimicrob Agents Chemother 54:4920–4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellado E, Diaz-Guerra TM, Cuenca-Estrella M, Rodriguez-Tudela JL (2001) Identification of two different 14-α sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 39:2431–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitropoulos KA, Gibbons GF, Reeves BEA (1976) Lanosterol 14α-demethylase. Similarity of enzyme-system from yeast and rat liver. Steroids 27:821–829

    Article  CAS  PubMed  Google Scholar 

  • Nakaune R, Adachi K, Nawata O, Tomiyama M, Akutsu K, Hibi T (1998) A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Appl Environ Microbiol 64:3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaune R, Hamamoto H, Imada J, Akutsu K, Hibi T (2002) A novel ABC transporter gene, PMR5, is involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Mol Genet Genomics 267:179–185

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Rebellato LM, Monteiro MC (1984) Report of an imazalil resistant strain of Penicillium digitatum (Sacc.) in citrus in Uruguay. Proc Int Soc Citric 2:588–590

    Google Scholar 

  • Sánchez-Torres P, Tuset JJ (2011) Molecular insights into fungicide resistance in sensitive and resistant Penicillium digitatum strains infecting citrus. Postharvest Biol Technol 59:159–165

    Article  CAS  Google Scholar 

  • Smilanick JL, Mansour MF, Margosan DA, Gabler FM, Goodwine WR (2005) Influence of pH and NaHCO3 on effectiveness of imazalil to inhibit germination of Penicillium digitatum and to control postharvest green mold on citrus fruit. Plant Dis 89:640–648

    Article  CAS  PubMed  Google Scholar 

  • Smilanick JL, Mansour MF, Gabler FM, Goodwine WR (2006) The effectiveness of pyrimethanil to inhibit germination of Penicillium digitatum and to control citrus green mold after harvest. Postharvest Biol Technol 42:75–85

    Article  CAS  Google Scholar 

  • Stammler G, Cordero J, Koch A, Semar M, Schlehuber S (2009) Role of the Y134F mutation in cyp51 and over-expression of cyp51 in the sensitivity response of Puccinia triticina to epoxiconazole. Crop Prot 28:891–897

    Article  CAS  Google Scholar 

  • Tang QY, Feng MG (2007) DPS data processing system: experimental design, statistical analysis, and data mining. Science Press, Beijing

    Google Scholar 

  • Trzaskos J, Kawata S, Gaylor JL (1986) Microsomal enzymes of cholesterol biosynthesis: purification of lanosterol 14α-methyl demethylase cytochromeP450 from hepatic microsomes. J Biol Chem 261:4651–4657

    Google Scholar 

  • Verweij PE, Snelders E, Kema GHJ, Mellado E, Melchers WJG (2009) Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 9:789–795

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Li HY (2008) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic fungus Penicillium digitatum. J Zhejiang Univ Sci B 9:823–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild BL (1994) Differential sensitivity of citrus green mold isolates (Penicillium digitatum Sacc.) to the fungicide imazalil. New Zeal J Crop Hort 22:167–171

    Article  Google Scholar 

  • Yan X, Ma WB, Li Y, Wang H, Que YW, Ma ZH, Talbot NJ, Wang ZY (2011) A sterol 14α-demethylase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 48:144–153

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Liu X, Li B, Ma Z (2009) Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology 99:487–497

  • Yoshida Y (1988) Cytochrome P450 of fungi: primary target for azole antifungal agents. Curr Top Med Mycol 2:388–418

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Aoyama Y (1987) Interaction of azole antifungal agents with cytochrome P-45014DM purified from Saccharomyces cerevisiae microsomes. Biochem Pharmacol 36:229–235

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZF, Zhu ZR, Ma ZH, Li HY (2009) A molecular mechanism of azoxystrobin resistance in Penicillium digitatum UV mutants and a PCR-based assay for detection of azoxystrobin-resistant strains in packing- or store-house isolates. Int J Food Microbiol 131:157–161

    Article  CAS  PubMed  Google Scholar 

  • Zhu JW, Xie QY, Li HY (2006) Occurrence of imazalil-resistant biotype of Penicillium digitatum in China and the resistant molecular mechanism. J Zhejiang Univ Sci A 7:362–365

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks go to Dr. Xiaoguang Liu (School of Bioengineering, Tianjin University of Science and Technology, China) and Dr. Matthias Hahn (Department of Biology, University of Kaiserslautern, Germany) for their helpful suggestions and critical reviews of the manuscript. This work was supported by the National Foundation of Natural Science of China (30571236 & 31071649) and the earmarked fund for Modern Agro-industry Technology Research System (MATRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongye Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Wang, J., Feng, D. et al. PdCYP51B, a new putative sterol 14α-demethylase gene of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis. Appl Microbiol Biotechnol 91, 1107–1119 (2011). https://doi.org/10.1007/s00253-011-3355-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3355-7

Keywords

Navigation