[go: up one dir, main page]

Skip to main content
Log in

Genetically engineered microbial biosensors for in situ monitoring of environmental pollution

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial biosensors are compact, portable, cost effective, and simple to use, making them seem eminently suitable for the in situ monitoring of environmental pollution. One promising approach for such applications is the fusion of reporter genes with regulatory genes that are dose-dependently responsive to the target chemicals or physiological signals. Their biosensor capabilities, such as target range and sensitivity, could be improved by modification of regulatory genes. Recent uses of such genetically engineered microbial biosensors include the development of portable biosensor kits and high-throughput cell arrays on chips, optic fibers, or other platforms for on-site and on-line monitoring of environmental pollution. This mini-review discusses recent advances in microbial biosensors and their future prospects, with a focus on the development and application of genetically modified microbial biosensors for in situ environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585

    Article  CAS  Google Scholar 

  • Bahl MI, Hansen LH, Licht TR, Sørensen SJ (2004) In vivo detection and quantification of tetracycline by use of a whole-cell biosensor in the rat intestine. Antimicrob Agents Chemother 48:1112–1117

    Article  CAS  Google Scholar 

  • Baumstark-Khan C, Cioara K, Rettberg P, Horneck G (2005) Determination of geno- and cytotoxicity of groundwater and sediments using the recombinant SWITCH test. J Environ Sci Health 40:245–263

    Article  Google Scholar 

  • Bechor O, Smulski DR, Van Dyk TK, LaRossa RA, Belkin S (2002) Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fab’::lux fusions. J Biotechnol 94:125–132

    Article  CAS  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    Article  CAS  Google Scholar 

  • Ben-Yoav H, Elad T, Shlomovits O, Belkin S, Shacham-Diamand Y (2009) Optical modeling of bioluminescence in whole cell biosensors. Biosens Bioelectron 24:1969–1973

    Article  CAS  Google Scholar 

  • Biran I, Babai R, Levcov K, Rishpon J, Ron EZ (2000) Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2:285–290

    Article  CAS  Google Scholar 

  • Biran I, Rissin DM, Ron EZ, Walt DR (2003) Optical imaging fiber-based live bacterial cell array biosensor. Anal Biochem 315:106–113

    Article  CAS  Google Scholar 

  • Bjerketorp J, Håkansson S, Belkin S, Jansson JK (2006) Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr Opin Microbiol 17:43–49

    CAS  Google Scholar 

  • Bolton EK, Sayler GS, Nivens DE, Rochelle JM, Ripp S, Simpson ML (2002) Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actuators B Chem 85:179–185

    Article  Google Scholar 

  • Burmølle M, Hansen LH, Oregaard G, Sørensen SJ (2003) Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Microb Ecol 45:226–236

    Article  Google Scholar 

  • Choi SH, Gu MB (2002) A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosens Bioelectron 17:433–440

    Article  CAS  Google Scholar 

  • Dawson JJC, Iroegbu CO, Maciel H, Paton GI (2008) Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compound in soils. J App Microbiol 104:141–151

    CAS  Google Scholar 

  • del Busto-Ramos M, Budzik M, Corvalan C, Morgan M, Turco R, Nivens D, Applegate B (2008) Development of an online biosensor for in situ monitoring of chlorine dioxide gas disinfection efficacy. Appl Microbiol Biotechnol 78:573–580

    Article  Google Scholar 

  • Diaz E, Prieto MA (2000) Bacterial promoters triggering biodegradation of aromatic pollutants. Curr Opin Biotech 11:467–475

    Article  CAS  Google Scholar 

  • Diplock EE, Mardlin DP, Killham KS, Paton GI (2009) Predicting bioremediation of hydrocarbons: laboratory to field scale. Environ Pollut 157:1831–1840

    Article  CAS  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    Article  Google Scholar 

  • Durrieu C, Tran-Minh C (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51:206–209

    Article  CAS  Google Scholar 

  • Fujimoto H, Wakabayashi M, Yamashiro H, Maeda I, Isoda K, Kondoh M, Kawase M, Miyasaka H, Yagi K (2006) Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum: Rhodovulum sulfidophilum as an arsenite biosensor. Appl Microbiol Biotechnol 73:332–338

    Article  CAS  Google Scholar 

  • Galvão TC, de Lorenzo V (2006) Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotech 17:34–42

    Article  Google Scholar 

  • Gu MB, Kim BC, Cho J, Hansen PD (2001) The continuous monitoring of field water samples with a novel multi-channel two-stage mini-bioreactor system. Environ Monit Assess 70:71–81

    Article  CAS  Google Scholar 

  • Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24:333–342

    Article  CAS  Google Scholar 

  • Hansen LH, Sørensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:483–494

    Article  CAS  Google Scholar 

  • Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensors—are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280

    Article  CAS  Google Scholar 

  • Hock B, Seifert M, Kramer K (2002) Engineering receptors and antibodies for biosensors. Biosens Bioelectron 17:239–249

    Article  CAS  Google Scholar 

  • Horsburgh AM, Mardlin DP, Turner NL, Henkler R, Strachan N, Glover LA, Paton GI, Killham K (2002) On-line microbial biosensing and fingerprinting of water pollutants. Biosens Bioelectron 17:495–501

    Article  CAS  Google Scholar 

  • Ivask A, Hakkila K, Virta M (2001) Detection of organomercurials with sensor bacteria. Anal Chem 21:5168–5171

    Article  Google Scholar 

  • Keane A, Phoenix P, Ghoshal S, Lau PCK (2002) Exposing culprit organic pollutants: a review. J Microbiol Meth 49:103–119

    Article  CAS  Google Scholar 

  • Kim BC, Gu MB (2003) A bioluminescent sensor for high throughput toxicity classification. Biosens Bioelectron 18:1015–1021

    Article  CAS  Google Scholar 

  • Kim MN, Park HH, Lim WK, Shin HJ (2005) Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J Microbiol Meth 60:235–245

    Article  CAS  Google Scholar 

  • Kuang Y, Biran I, Walt DR (2004) Living bacterial cell array for genotoxin monitoring. Anal Chem 76:2902–2909

    Article  CAS  Google Scholar 

  • Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21:500–507

    Article  CAS  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    Article  CAS  Google Scholar 

  • Lei Y, Mulchandani P, Wang J, Chen W, Mulchandani A (2005) Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitropenyl-substituted organophosphate nerve agents. Environ Sci Technol 39:8853–8857

    Article  CAS  Google Scholar 

  • Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190

    Article  CAS  Google Scholar 

  • Matsui N, Kaya T, Nagamine K, Yasukawa T, Shiku H, Matsue T (2006) Electrochemical mutagen screening using microbial chip. Biosens Bioelectron 21:1202–1209

    Article  CAS  Google Scholar 

  • Marqués S, Aranda-Olmedo I, Ramos JL (2006) Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr Opin Biotech 17:50–56

    Article  Google Scholar 

  • Medintz IL, Deschamps JR (2006) Maltose-binding protein: a versatile platform for prototyping biosensing. Curr Opin Biotechnol 17:17–27

    Article  CAS  Google Scholar 

  • Mitchell RJ, Gu MB (2004) An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl Microbiol Biotechnol 64:46–52

    Article  CAS  Google Scholar 

  • Mulchandani P, Chen W, Mulchandani A, Wang J, Chen L (2001) Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorous hydrolase. Biosens Bioelectron 16:433–437

    Article  CAS  Google Scholar 

  • Niles DH (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4:77–82

    Article  Google Scholar 

  • Norman A, Hansen LH, Sørensen SJ (2005) Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sul4 promoters. Appl Environ Microbiol 71:2338–2346

    Article  CAS  Google Scholar 

  • Oda Y, Funasaka K, Kitano M, Nakama A, Yoshikura T (2004) Use of a high-throughput umu-microplate test system for rapid detection of genotoxicity produced by mutagenic carcinogens and airborne particulate matter. Environ Mol Mutagen 43:10–19

    Article  CAS  Google Scholar 

  • Paitan Y, Biran D, Biran I, Shechter N, Babai R, Rishpon J, Ron EZ (2003) On-line and in situ biosensors for monitoring environmental pollution. Biotech Adv 22:27–33

    Article  CAS  Google Scholar 

  • Paitan Y, Biran I, Shechter N, Biran D, Rishpon J, Ron EZ (2004) Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal Biochem 335:175–183

    Article  CAS  Google Scholar 

  • Park HH, Lee HY, Lim WK, Shin HJ (2005a) NahR: effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Arch Biochem Biophys 434:67–74

    Article  CAS  Google Scholar 

  • Park HH, Lim WK, Shin HJ (2005b) In vitro binding of purified NahR regulatory protein with promoter Psal. Biochim Biophys Acta 1725:247–255

    CAS  Google Scholar 

  • Park SM, Park HH, Lim WK, Shin HJ (2003) A new variant activator involved in the degradation of phenolic compounds from a strain of Pseudomonas putida. J Biotechnol 103:227–236

    Article  CAS  Google Scholar 

  • Patel PD (2006) Overview of affinity biosensors in food analysis. J AOAC Int 89:805–818

    CAS  Google Scholar 

  • Paton GI, Reid BJ, Semple KT (2009) Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environ Pollut 157:1643–1648

    Article  CAS  Google Scholar 

  • Petänen T, Virta M, Karp M, Romantschuk M (2001) Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microb Ecol 41:360–368

    Google Scholar 

  • Pooley DT, Larsson J, Jones G, Rayner-Brandes MH, Lloyd D, Gibson C, Stewart WR (2004) Continuous culture of photobacterium. Biosens Bioelectron 19:1457–1463

    Article  CAS  Google Scholar 

  • Roberto FF, Barnes JM, Bruhn DF (2002) Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 58:181–188

    Article  CAS  Google Scholar 

  • Ron EZ (2007) Biosensing environmental pollution. Curr Opin Biotech 18:252–256

    Article  CAS  Google Scholar 

  • Sagi E, Hever N, Rosen R, Bartolome AJ, Premkumar JR, Ulber R, Lev O, Scheper T, Belkin S (2003) Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sens Actuators B 90:2–8

    Article  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    Article  CAS  Google Scholar 

  • Shin HJ, Park HH, Lim WK (2005) Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J Biotechnol 119:36–43

    Article  CAS  Google Scholar 

  • Sørensen SJ, Burmølle M, Hansen LH (2006) Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr Opin Biotech 17:11–16

    Article  Google Scholar 

  • Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68:1962–1971

    Article  CAS  Google Scholar 

  • Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malick KA, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arenate in potable water. Environ Sci Technol 37:4743–4750

    Article  CAS  Google Scholar 

  • Tani H, Maehana K, Kamidate T (2004) Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal Chem 76:6693–6697

    Article  CAS  Google Scholar 

  • Tecon R, van der Meer JR (2006) Information from single-cell bacterial biosensors: what is it good for? Curr Opin Biotech 17:4–10

    Article  CAS  Google Scholar 

  • Tecon R, Wells M, van der Meer JR (2006) A new green fluorescent protein-based bacterial biosensor for analyzing phenanthrene fluxes. Environ Microbiol 8:697–708

    Article  CAS  Google Scholar 

  • Thouand G, Horry H, Durand MJ, Picart P, Bendriaa L, Daniel P, DuBow MS (2003) Development of a biosensor for on-line detection of tributyltin with a recombinant bioluminescent Escherichia coli strain. Appl Microbiol Biotechnol 62:218–225

    Article  CAS  Google Scholar 

  • Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26

    Article  CAS  Google Scholar 

  • Toba FA, Hay AG (2005) A simple solid phase assay for the detection of 2,4-D in soil. J Microbiol Meth 62:135–143

    Article  CAS  Google Scholar 

  • Trang PT, Berg M, Viet PH, Van Mui N, van der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:7625–7630

    Article  CAS  Google Scholar 

  • van der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020

    Article  Google Scholar 

  • Van Dyk TK, DeRose EJ, Gonye GE (2001) LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. J Bacteriol 183:5496–5505

    Article  Google Scholar 

  • Védrine C, Leclerc JC, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457–463

    Article  Google Scholar 

  • Vollmer AC, Van Dyk TK (2004) Stress responsive bacteria: biosensors as environmental monitors. Adv Microb Physiol 49:131–174

    Article  CAS  Google Scholar 

  • Wells M, Gösch M, Rigler R, Harms H, Lasser T, van der Meer JR (2005) Ultrasenstitive reporter protein detection in genetically engineered bacteria. Anal Chem 77:2683–2689

    Article  CAS  Google Scholar 

  • Werlen C, Jaspers MC, van der Meer JR (2004) Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 70:43–51

    Article  CAS  Google Scholar 

  • Xu Z, Mulchandani A, Chen W (2003) Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions. Biotechnol Prog 19:1812–1815

    Article  CAS  Google Scholar 

  • Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258

    Article  CAS  Google Scholar 

  • Yoshida K, Inoue K, Takahashi Y, Ueda S, Isoda K, Yagi K, Maeda I (2008) Novel carotenoid-based biosensor for simple visual detection of arsenite: characterization and preliminary evaluation for environmental application. App Environ Microbiol 74:6730–6738

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a Frontier Project grant from Dongseo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Ja Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, H.J. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl Microbiol Biotechnol 89, 867–877 (2011). https://doi.org/10.1007/s00253-010-2990-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2990-8

Keywords

Navigation