[go: up one dir, main page]

Skip to main content
Log in

A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Rapid, specific and sensitive detection of pathogenic bacteria is crucial for public health and safety. Bacillus cereus is harmful as it causes foodborne illness and a number of systemic and local infections. We report a novel phage endolysin cell wall-binding domain (CBD) for B. cereus and the development of a highly specific and sensitive surface plasmon resonance (SPR)-based B. cereus detection method using the CBD. The newly discovered CBD from endolysin of PBC1, a B. cereus-specific bacteriophage, provides high specificity and binding capacity to B. cereus. By using the CBD-modified SPR chips, B. cereus can be detected at the range of 105–108 CFU/ml. More importantly, the detection limit can be improved to 102 CFU/ml by using a subtractive inhibition assay based on the pre-incubation of B. cereus and CBDs, removal of CBD-bound B. cereus, and SPR detection of the unbound CBDs. The present study suggests that the small and genetically engineered CBDs can be promising biological probes for B. cereus. We anticipate that the CBD-based SPR-sensing methods will be useful for the sensitive, selective, and rapid detection of B. cereus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadian PN, Kelley CP, Goluch ED (2014) Cellular analysis and detection using surface plasmon resonance techniques. Anal Chem 86:2799–2812

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999) Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosens Bioelectron 14:309–316

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28:1–12

    Article  CAS  PubMed  Google Scholar 

  • Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S (2011) Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst 136:486–492

    Article  CAS  PubMed  Google Scholar 

  • Baeumner AJ, Cohen RN, Miksic V, Min J (2003) RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens Bioelectron 18:405–413

    Article  CAS  PubMed  Google Scholar 

  • Bej AK, Mahbubani MH, Dicesare JL, Atlas RM (1991) Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Appl Environ Microbiol 57:3529–3534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23:382–398

    Article  PubMed Central  PubMed  Google Scholar 

  • Brewster JD, Gehring AG, Mazenko RS, Houten LJV, Crawford CJ (1996) Immunoelectrochemical assays for bacteria: use of epifluorescence microscopy and rapid-scan electrochemical techniques in development of an assay for Salmonella. Anal Chem 68:4153–4159

    Article  CAS  PubMed  Google Scholar 

  • Brzozowska E, Smietana M, Koba M, Gorska S, Pawlik K, Gamian A, Bock WJ (2015) Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings. Biosens Bioelectron 67:93–99

    Article  CAS  PubMed  Google Scholar 

  • Caliendo AM (2011) Multiplex PCR and emerging technologies for the detection of respiratory pathogens. Clin Infect Dis 52(Suppl 4):S326–S330

    Article  PubMed  Google Scholar 

  • Callewaert L, Walmagh M, Michiels CW, Lavigne R (2011) Food applications of bacterial cell wall hydrolases. Curr Opin Biotech 22:164–171

    Article  CAS  PubMed  Google Scholar 

  • Chen LH, Wang Q, Hou WG (2009) The utilization of BSA-modified chip on the investigation of ligand/protein interaction with surface plasma resonance. Afr J Biotechnol 8:7148–7155

    CAS  Google Scholar 

  • Chibli H, Ghali H, Park S, Peter YA, Nadeau JL (2014) Immobilized phage proteins for specific detection of staphylococci. Analyst 139:179–186

    Article  CAS  PubMed  Google Scholar 

  • Croci L, Delibato E, Volpe G, Palleschi G (2001) A rapid electrochemical ELISA for the detection of Salmonella in meat samples. Anal Lett 34:597–2607

    Article  Google Scholar 

  • Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300:57–362

    Article  Google Scholar 

  • Gould LH, Walsh KA, Vieira AR, Herman K, Williams IT, Hall AJ, Cole D (2013) Surveillance for foodborne disease outbreaks—United States, 1998–2008. MMWR Surveill Summ 62:1–34

    PubMed  Google Scholar 

  • Javed MA, Poshtiban S, Arutyunov D, Evoy S, Szymanski CM (2013) Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS One 8:e69770. doi:10.1371/journal.pone.0069770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang XB, Pang GC, Chen QS, Liang XY (2013) Fabrication of Bacillus cereus electrochemical immunosensor based on double-layer gold nanoparticles and chitosan. Sens Actuat B-Chem 177:1010–1016

    Article  CAS  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:63–371

    Article  Google Scholar 

  • Kong M, Kim M, Ryu S (2012) Complete genome sequence of Bacillus cereus bacteriophage PBC1. J Virol 86:6379–6380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ (2007) Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl Environ Microb 73:992–2000

    Article  Google Scholar 

  • Lambert C, Leonard N, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18:1250–1256

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Park HK, Jung Y, Kim JK, Jung SO, Chung BH (2007) Direct immobilization of protein G variants with various numbers of cysteine residues on a gold surface. Anal Chem 79:2680–2687

    Article  CAS  PubMed  Google Scholar 

  • Leonard P, Hearty S, Quinn J, O’Kennedy R (2004) A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron 19:1331–1335

    Article  CAS  PubMed  Google Scholar 

  • Leoni E, Legnani PP (2001) Comparison of selective procedures for isolation and enumeration of Legionella species from hot water systems. J Appl Microbiol 90:27–33

    Article  CAS  PubMed  Google Scholar 

  • Loessner MJ (2005) Bacteriophage endolysins—current state of research and applications. Curr Opin Microbiol 8:480–487

    Article  CAS  PubMed  Google Scholar 

  • Loessner MJ, Maier SK, Daubek-Puza H, Wendlinger G, Scherer S (1997) Three Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli. J Bacteriol 179:2845–2851

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loessner MJ, Kramer K, Ebel F, Scherer S (2002) C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol 44:335–349

    Article  CAS  PubMed  Google Scholar 

  • Mahony J, McAuliffe O, Ross RP, van Sinderen D (2011) Bacteriophages as biocontrol agents of food pathogens. Curr Opin Biotech 22:157–163

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2007) CDD: a conserved domain database for interactive domain family analysis. Nucl Acids Res 35:D237–D240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mothershed EA, Whitney AM (2006) Nucleic acid-based methods for the detection of bacterial pathogens: present and future considerations for the clinical laboratory. Clin Chim Acta 363:206–220

    Article  CAS  PubMed  Google Scholar 

  • Olsen JE (2000) DNA-based methods for detection of food-borne bacterial pathogens. Food Res Int 33:257–266

    Article  CAS  Google Scholar 

  • Pal S, Alocilja EC, Downes FP (2007) Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosens Bioelectron 22:2329–2336

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Long MJC, Li XM, Shi Jf, Hedstrom L, Xu B (2011) Glutathione (GSH)-decorated magnetic nanoparticles for binding glutathione-S-transferase (GST) fusion protein and manipulating live cells. Chem Sci 2:945–948

    Article  CAS  Google Scholar 

  • Petrenko VA, Vodyanoy VJ (2003) Phage display for detection of biological threat agents. J Microbiol Meth 53:253–262

    Article  CAS  Google Scholar 

  • Poshtiban S, Javed MA, Arutyunov D, Singh A, Banting G, Szymanski CM, Evoy S (2013) Phage receptor binding protein-based magnetic enrichment method as an aid for real time PCR detection of foodborne bacteria. Analyst 138:5619–5626

    Article  CAS  PubMed  Google Scholar 

  • Radke SM, Alocilja EC (2005) A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens Bioelectron 20:1662–1667

    Article  CAS  PubMed  Google Scholar 

  • Rangan C (2008) Bacillus cereus. In: Barceloux DG (ed) Medical toxicology of natural substances: foods, fungi, medicinal herbs, plants, and venomous animals. Wiley, New Jersey, pp 89–95

    Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, Loessner MJ (2010) Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microb 76:5745–5756

    Article  CAS  Google Scholar 

  • Schmelcher M, Tchang VS, Loessner MJ (2011) Domain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity. Microb Biotechnol 4:651–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheffield P, Garrard S, Derewenda Z (1999) Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr Purif 15:34–39

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Arya SK, Glass N, Hanifi-Moghaddam P, Naidoo R, Szymanski CM, Tanha J, Evoy S (2010) Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosens Bioelectron 26:131–138

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Arutyunov D, McDermott MT, Szymanski CM, Evoy S (2011) Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst 136:4780–4786

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Arutyunov D, Szymanski CM, Evoy S (2012) Bacteriophage based probes for pathogen detection. Analyst 137:3405–3421

    Article  CAS  PubMed  Google Scholar 

  • Skottrup PD, Nicolaisen M, Justesen AF (2008) Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24:339–348

    Article  CAS  PubMed  Google Scholar 

  • Stephan R, Schumacher S, Zychowska MA (2003) The VIT® technology for rapid detection of Listeria monocytogenes and other Listeria spp. Int J Food Microbiol 89:287–290

    Article  CAS  PubMed  Google Scholar 

  • Taitt CR, Golden JP, Shubin YS, Shriver-Lake LC, Sapsford KE, Rasooly A, Ligler FS (2004) A portable array biosensor for detecting multiple analytes in complex samples. Microb Ecol 47:175–185

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tawil N, Sacher E, Mandeville R, Meunier M (2014) Bacteriophages: biosensing tools for multi-drug resistant pathogens. Analyst 139:1224–1236

    Article  CAS  PubMed  Google Scholar 

  • Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Article  CAS  PubMed  Google Scholar 

  • Tessema M, Simons PC, Cimino DF, Sanchez L, Waller A, Posner RG, Wandinger-Ness A, Prossnitz ER, Sklar LA (2006) Glutathione-S-transferase-green fluorescent protein fusion protein reveals slow dissociation from high site densiy beads and measures free GSH. Cytom Part A 69A:326–334

    Article  CAS  Google Scholar 

  • Tims TB, Lim DV (2004) Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. J Microbiol Meth 59:127–130

    Article  CAS  Google Scholar 

  • Tolba M, Ahmed MU, Tlili C, Eichenseher F, Loessner MJ, Zourob M (2012) A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst 137:5749–5756

    Article  CAS  PubMed  Google Scholar 

  • Turkova J (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J Chromatogr B 722:11–31

    Article  CAS  Google Scholar 

  • Vaughan RD, O’Sullivan CK, Guilbault GG (2001) Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzym Microb Tech 29:635–638

    Article  CAS  Google Scholar 

  • Vaughan RD, Carter RM, O’Sullivan CK, Guilbault GG (2003) A quartz crystal microbalance (QCM) sensor for the detection of Bacillus cereus. Anal Lett 36:731–747

    Article  CAS  Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Singh S, Zeng DL, King K, Nema S (2007) Antibody structure, instability, and formulation. J Pharm Sci-Us 96:1–26

    Article  CAS  Google Scholar 

  • Wong YY, Ng SP, Ng MH, Si SH, Yao SZ, Fung YS (2002) Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosens Bioelectron 17:676–684

    Article  CAS  PubMed  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Wagner G (2010) Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies. J Biomol NMR 46:23–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Public Welfare & Safety research program (NRF-2012M3A2A1051684, NRF-2012M3A2A1051682) through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (MSIP), Global Frontier Project (H-GUARD_2013M3A6B2078950, H-GUARD_2014M3A6B2060489) through the Center for BioNano Health-Guard funded by the MSIP, and KRIBB initiative Research Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bong Hyun Chung or Sangryeol Ryu.

Additional information

M. Kong and J. Sim contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1021 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, M., Sim, J., Kang, T. et al. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus . Eur Biophys J 44, 437–446 (2015). https://doi.org/10.1007/s00249-015-1044-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1044-7

Keywords

Navigation