[go: up one dir, main page]

Skip to main content
Log in

Fluorescence Studies of Nicotinic Acetylcholine Receptor and Its Associated Lipid Milieu: The Influence of Erwin London’s Methodological Approaches

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Erwin London dedicated considerable effort to understanding lipid interactions with membrane-resident proteins and how these interactions shaped the formation and maintenance of lipid phases and domains. In this endeavor, he developed ad hoc techniques that greatly contributed to advancements in the field. We have employed and/or modified/extended some of his methodological approaches and applied them to investigate lipid interaction with the nicotinic acetylcholine receptor (nAChR) protein, the paradigm member of the superfamily of rapid pentameric ligand-gated ion channels (pLGIC). Our experimental systems ranged from purified receptor protein reconstituted into synthetic lipid membranes having known effects on receptor function, to cellular systems subjected to modification of their lipid content, e.g., varying cholesterol levels. We have often employed fluorescence techniques, including fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and of nAChR intrinsic fluorescence by nitroxide spin-labeled phospholipids, DPH anisotropy, excimer formation of pyrene-phosphatidylcholine, and Förster resonance energy transfer (FRET) from the protein moiety to the extrinsic probes Laurdan, DPH, or pyrene-phospholipid to characterize various biophysical properties of lipid–receptor interactions. Some of these strategies are revisited in this review. Special attention is devoted to the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the nAChR. The receptor protein was shown to organize its PA-containing immediate microenvironment into microdomains with high lateral packing density and rigidity. PA and cholesterol appear to compete for the same binding sites on the nAChR protein.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

nAChR:

Nicotinic acetylcholine receptor

DPH:

Diphenylhexatriene

DOPC:

Dioleoyl phosphatidylcholine

DPPC:

Dipalmitoyl phosphatidylcholine

POPC:

1-Palmitoyl-2-oleoyl phosphatidylcholine

POPA:

1-Palmitoyl-2-oleoyl phosphatidic acid

MLV:

Multilamellar vesicles

SLPC:

Nitroxide-spin-labeled 1-palmitoyl-2-stearoyl-(doxyl)-sn-glycero-3-phosphocholine

PA:

Phosphatidic acid

PyPC:

1-Hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-phosphocholine

T m :

Transition temperature

F:

Fluorescence intensity

FRET:

Förster energy transfer

References

  • Addona GH, Sandermann H Jr, Kloczewiak MA, Husian SS, Miller KW (1998) Where does cholesterol act during activation of the nicotinic acetylcholine receptor? Biochim Biophys Acta 1370:299–309

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36:10944–10953

    Article  CAS  PubMed  Google Scholar 

  • Almarza G, Sanchez F, Barrantes FJ (2014) Transient cholesterol effects on nicotinic acetylcholine receptor cell-surface mobility. PLoS ONE 9:e100346

    Article  PubMed  PubMed Central  Google Scholar 

  • Antollini SS, Soto MA, Bonini de Romanelli IC, Gutierrez-Merino C, Sotomayor P, Barrantes FJ (1996) Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by Laurdan generalized polarization and fluorescence energy transfer. Biophys J 70:1275–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias HR, Sankaram MB, Marsh D, Barrantes FJ (1990) Effect of local anaesthetics on steroid–nicotinic acetylcholine receptor interactions in native membranes of Torpedo marmorata electric organ. Biochim Biophys Acta 1027:287–294

    Article  CAS  PubMed  Google Scholar 

  • Artigues A, Villar MT, Fernandez AM, Ferragut JA, Gonzalez-Ros JM (1989) Cholesterol stabilizes the structure of the nicotinic acetylcholine receptor reconstituted in lipid vesicles. Biochim Biophys Acta 985:325–330

    Article  CAS  Google Scholar 

  • Baenziger JE, Darsaut TE, Morris ML (1999) Internal dynamics of the nicotinic acetylcholine receptor in reconstituted membranes. Biochemistry 38:4905–4911

    Article  CAS  PubMed  Google Scholar 

  • Baenziger JE, Morris ML, Darsaut TE, Ryan SE (2000) Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor. J Biol Chem 275:777–784

    Article  CAS  PubMed  Google Scholar 

  • Baenziger JE, Hénault CM, Therien JPD, Sun J (2015) Nicotinic acetylcholine receptor–lipid interactions: mechanistic insight and biological function. Biochim Biophys Acta Biomembr 1848:1806–1817

    Article  CAS  Google Scholar 

  • Baier CJ, Gallegos CE, Levi V, Barrantes FJ (2010) Cholesterol modulation of nicotinic acetylcholine receptor surface mobility. Eur Biophys J 39:213–227

    Article  CAS  PubMed  Google Scholar 

  • Baier CJ, Fantini J, Barrantes FJ (2011) Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep 1:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron GS, Caughey B (2003) Effect of GPI-anchor-dependent and -independent prion protein association with model raft membranes on conversion to the protease-resistant isoform. J Biol Chem 278(17):14883–14892

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (1988) The acetylcholine receptor and its membrane environment. In: Hidalgo C (ed) Structure and dynamics of membranes. Plenum Publishing Corporation, New York, pp 147–175

    Google Scholar 

  • Barrantes FJ (1992) Structural and functional crosstalk between acetylcholine receptor and its membrane environment. Mol Neurobiol 6:463–482

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (1993) Structural–functional correlates of the nicotinic acetylcholine receptor and its lipid microenvironment. FASEB J 7:1460–1467

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (2004) Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res Brain Res Rev 47:71–95

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (2010) Cholesterol effects on nicotinic acetylcholine receptor: cellular aspects. In: Harris JR (ed) Subcellular biochemistry. Springer, Dordrecht, pp 467–487

    Google Scholar 

  • Barrantes FJ (2014) Cell-surface translational dynamics of nicotinic acetylcholine receptors. Front Synaptic Neurosci 6:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrantes FJ (2017) Spatiotemporal dynamics of nicotinic acetylcholine receptors and lipid platforms. In: Chattopadhyay A (ed) Springer series in biophysics: membrane organization and dynamics. Springer, Berlin, pp 195–217

    Chapter  Google Scholar 

  • Barrantes FJ, Gallegos C, Baier JC, Bonini IC, Pediconi MF (2002) Cholesterol and sphingolipid levels modulate cell surface targeting of nicotinic acetylcholine receptor in mammalian cells. Biophys J 82:215a

    Google Scholar 

  • Bermudez V, Antollini SS, Fernandez Nievas GA, Aveldano MI, Barrantes FJ (2010) Partition profile of the nicotinic acetylcholine receptor in lipid domains upon reconstitution. J Lipid Res 51:2629–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhushan A, McNamee MG (1993) Correlation of phospholipid structure with functional effects on the nicotinic acetylcholine receptor. A modulatory role for phosphatidic acid. Biophys J 64:716–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanton MP, Cohen JB (1992) Mapping the lipid-exposed regions in the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 31:3738–3750

    Article  CAS  PubMed  Google Scholar 

  • Borroni V, Barrantes FJ (2011) Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J Biol Chem 286:17122–17132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Criado M, Eibl H, Barrantes FJ (1982) Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry 21:3622–3629

    Article  CAS  PubMed  Google Scholar 

  • Criado M, Eibl H, Barrantes FJ (1984) Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. J Biol Chem 259:9188–9198

    Article  CAS  PubMed  Google Scholar 

  • Crowley J, Withana M, Deplazes E (2021) The interaction of steroids with phospholipid bilayers and membranes. Biophys Rev 14:163–179

    Article  PubMed  Google Scholar 

  • daCosta CJ, Baenziger JE (2009) A lipid-dependent uncoupled conformation of the acetylcholine receptor. J Biol Chem 284:17819–17825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • daCosta CJ, Ogrel AA, McCardy EA, Blanton MP, Baenziger JE (2002) Lipid–protein interactions at the nicotinic acetylcholine receptor. A functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers. J Biol Chem 277:201–208

    Article  CAS  PubMed  Google Scholar 

  • daCosta CJ, Wagg ID, McKay ME, Baenziger JE (2004) Phosphatidic acid and phosphatidylserine have distinct structural and functional interactions with the nicotinic acetylcholine receptor. J Biol Chem 279:14967–14974

    Article  CAS  PubMed  Google Scholar 

  • de Almeida RFM, Loura LMS, Prieto M, Watts A, Fedorov A, Barrantes FJ (2004) Cholesterol modulates the organization of the gamma M4 transmembrane domain of the muscle nicotinic acetylcholine receptor. Biophys J 86:2261–2272

    Article  PubMed  PubMed Central  Google Scholar 

  • Epstein M, Racker E (1978) Reconstitution of carbamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica. J Biol Chem 253:6660–6662

    Article  CAS  PubMed  Google Scholar 

  • Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol 4:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Ballester G, Castresana J, Fernandez AM, Arrondo J-LR, Ferragut JA, Gonzalez-Ros JM (1994) A role for cholesterol as a structural effector of the nicotinic acetylcholine receptor. Biochemistry 33:4065–4071

    Article  CAS  PubMed  Google Scholar 

  • Fong TM, McNamee MG (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25:830–840

    Article  CAS  PubMed  Google Scholar 

  • Fong TM, McNamee MG (1987) Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry 26:3871–3880

    Article  CAS  PubMed  Google Scholar 

  • Galla HJ, Hartmann W (1980) Excimer-forming lipids in membrane research. Chem Phys Lipids 27:199–219

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JM, Lehtonen JY, Kinnunen PK (1997) Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids 88:1–13

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JM, Subramanian M, Kinnunen PK (1998) Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry 37:17562–17570

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JM, Brockman HL, Brown RE, Kinnunen PK (2001) Interfacial interactions of ceramide with dimyristoylphosphatidylcholine: impact of the N-acyl chain. Biophys J 80:765–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath LI, Arias HR, Hankovszky HO, Hideg K, Barrantes FJ, Marsh D (1990) Association of spin-labeled local anesthetics at the hydrophobic surface of acetylcholine receptor in native membranes from Torpedo marmorata. Biochemistry 29:8707–8713

    Article  CAS  PubMed  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  PubMed  Google Scholar 

  • Jin R, He S, Black KA, Clarke OB, Wu D, Bolla JR, Johnson P, Periasamy A, Wardak A, Czabotar P, Colman PM, Robinson CV, Laver D, Smith BJ, Gulbis JM (2022) Ion currents through Kir potassium channels are gated by anionic lipids. Nat Commun 13:490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones ME, Lentz BR (1986) Phospholipid lateral organization in synthetic membranes as monitored by pyrene-labeled phospholipids: effects of temperature and prothrombin fragment 1 binding. Biochemistry 25:567–574

    Article  CAS  PubMed  Google Scholar 

  • Koivusalo M, Alvesalo J, Virtanen JA, Somerharju P (2004) Partitioning of pyrene-labeled phospho- and sphingolipids between ordered and disordered bilayer domains. Biophys J 86:923–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lentz BR, Barenholz Y, Thompson TE (1976) Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes. Biochemistry 15:4529–4537

    Article  CAS  PubMed  Google Scholar 

  • Maizón HB, Barrantes FJ (2021) A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor. Brief Bioinform. https://doi.org/10.1093/bib/bbab435

    Article  Google Scholar 

  • Mantipragada SB, Horvath LI, Arias HR, Schwarzmann G, Sandhoff K, Barrantes FJ, Marsh D (2003) Lipid–protein interactions and effect of local anesthetics in acetylcholine receptor-rich membranes from Torpedo marmorata electric organ. Biochemistry 42:9167–9175

    Article  CAS  PubMed  Google Scholar 

  • Marsh D, Barrantes FJ (1978) Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc Natl Acad Sci USA 75:4329–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh D, Watts A, Barrantes FJ (1981) Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata. Biochim Biophys Acta 645:97–101

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Pena YVI, Akaaboune M (2021) The metabolic stability of the nicotinic acetylcholine receptor at the neuromuscular junction. Cells 10(2):358

    Article  Google Scholar 

  • Mayor S, Rao M (2004) Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5:231–240

    Article  CAS  PubMed  Google Scholar 

  • Mosqueira A, Camino PA, Barrantes FJ (2018) Cholesterol modulates acetylcholine receptor diffusion by tuning confinement sojourns and nanocluster stability. Sci Rep 8:11974

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosqueira A, Camino PA, Barrantes FJ (2020) Antibody-induced crosslinking and cholesterol-sensitive, anomalous diffusion of nicotinic acetylcholine receptors. J Neurochem 152:663–674

    Article  CAS  PubMed  Google Scholar 

  • Nys M, Kesters D, Ulens C (2013) Structural insights into Cys-loop receptor function and ligand recognition. Biochem Pharmacol 86:1042–1053

    Article  CAS  PubMed  Google Scholar 

  • Pediconi MF, Gallegos CE, De Los Santos EB, Barrantes FJ (2004) Metabolic cholesterol depletion hinders cell-surface trafficking of the nicotinic acetylcholine receptor. Neuroscience 128:239–249

    Article  CAS  PubMed  Google Scholar 

  • Perillo VL, Penalva DA, Vitale AJ, Barrantes FJ, Antollini SS (2016) Transbilayer asymmetry and sphingomyelin composition modulate the preferential membrane partitioning of the nicotinic acetylcholine receptor in Lo domains. Arch Biochem Biophys 591:76–86

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2006) Rafts defined: a Report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598

    Article  CAS  PubMed  Google Scholar 

  • Poveda JA, Encinar JA, Fernandez AM, Mateo CR, Ferragut JA, Gonzalez-Ros JM (2002) Segregation of phosphatidic acid-rich domains in reconstituted acetylcholine receptor membranes. Biochemistry 41:12253–12262

    Article  CAS  PubMed  Google Scholar 

  • Poveda JA, Giudici AM, Renart ML, Molina ML, Montoya E, Fernandez-Carvajal A, Fernandez-Ballester G, Encinar JA, Gonzalez-Ros JM (2014) Lipid modulation of ion channels through specific binding sites. Biochim Biophys Acta 1838:1560–1567

    Article  CAS  PubMed  Google Scholar 

  • Raines DE, Miller KW (1993) The role of charge in lipid selectivity for the nicotinic acetylcholine receptor. Biophys J 64:632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotstein NP, Arias HR, Barrantes FJ, Aveldano MI (1987) Composition of lipids in elasmobranch electric organ and acetylcholine receptor membranes. J Neurochem 49:1333–1340

    Article  CAS  PubMed  Google Scholar 

  • Ryan SE, Demers CN, Chew JP, Baenziger JE (1996) Structural effects of neutral and anionic lipids on the nicotinic acetylcholine receptor. J Biol Chem 271:24590–24597

    Article  CAS  PubMed  Google Scholar 

  • Samsonov AV, Mihalyov I, Cohen FS (2001) Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Biophys J 81:1486–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scher MG, Bloch RJ (1991) The lipid bilayer of acetylcholine receptor clusters of cultured rat myotubes is organized into morphologically distinct domains. Exp Cell Res 195:79–91

    Article  CAS  PubMed  Google Scholar 

  • Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18(6):361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6198–6202

    Article  Google Scholar 

  • Somerharju P (2002) Pyrene-labeled lipids as tools in membrane biophysics and cell biology. Chem Phys Lipids 116:57–74

    Article  CAS  PubMed  Google Scholar 

  • Somerharju PJ, Virtanen JA, Eklund KK, Vainio P, Kinnunen PK (1985) 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane probes: evidence for regular distribution in liquid-crystalline phosphatidylcholine bilayers. Biochemistry 24:2773–2781

    Article  CAS  PubMed  Google Scholar 

  • Sunshine C, McNamee MG (1992) Lipid modulation of nicotinic acetylcholine receptor function: the role of neutral and negatively charged lipids. Biochim Biophys Acta Biomembr 1108:240–246

    Article  CAS  Google Scholar 

  • Wenz JJ, Barrantes FJ (2003) Steroid structural requirements for stabilizing or disrupting lipid domains. Biochemistry 42:14267–14276

    Article  CAS  PubMed  Google Scholar 

  • Wenz JJ, Barrantes FJ (2005) Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes. Biochemistry 44:398–410

    Article  CAS  PubMed  Google Scholar 

  • White BH, Cohen JB (1988) Photolabeling of membrane-bound Torpedo nicotinic acetylcholine receptor with the hydrophobic probe 3- trifluoromethyl-3-(m-[125I]iodophenyl)diazirine. Biochemistry 27:8741–8751

    Article  CAS  PubMed  Google Scholar 

  • Xu X, London E (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39:843–849

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276:33540–33546

    Article  CAS  PubMed  Google Scholar 

  • Yano Y, Hanashima S, Tsuchikawa H, Yasuda T, Slotte JP, London E, Murata M (2020) Sphingomyelins and ent-sphingomyelins form homophilic nano-subdomains within liquid ordered domains. Biophys J 119:539–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoli M, Pucci S, Vilella A, Gotti C (2018) Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr Neuropharmacol 16:338–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks are due to Dr. Ana Sofía Vallés for her help with the Graphical Abstract, drawn using Servier Medical Art Commons Attribution 3.0 Unported License (http://smart.servier.com). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Barrantes.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection “Thematic Collection on Membrane Biophysics in Honor of Prof. Erwin London”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrantes, F.J. Fluorescence Studies of Nicotinic Acetylcholine Receptor and Its Associated Lipid Milieu: The Influence of Erwin London’s Methodological Approaches. J Membrane Biol 255, 563–574 (2022). https://doi.org/10.1007/s00232-022-00239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-022-00239-9

Keywords

Navigation