[go: up one dir, main page]

Skip to main content

Advertisement

Log in

The Voltage-dependent Anion Channel in Endoplasmic/Sarcoplasmic Reticulum: Characterization, Modulation and Possible Function

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In recent years, it has been recognized that there is a metabolic coupling between the cytosol, ER/SR and mitochondria. In this cross-talk, mitochondrial Ca2+ homeostasis and ATP production and supply play a major role. The primary transporter of adenine nucleotides, Ca2+and other metabolites into and out of mitochondria is the voltage-dependent anion channel (VDAC) located at the outer mitochondrial membrane, at a crucial position in the cell. VDAC has been established as a key player in mitochondrial metabolite and ion signaling and it has also been proposed that VDAC is present in extramitochondrial membranes. Thus, regulation of VDAC, as the main interface between mitochondrial and cellular metabolism, by other molecules is of utmost importance. This article reviews localization and function of VDAC, and focuses on VDAC as a skeletal muscle sarcoplasmic reticulum channel. The regulation of VDAC activity by associated proteins and by inhibitors is also presented. Several aspects of the physiological relevance of VDAC to Ca2+ homeostasis and mitochondria-mediated apoptosis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Azoulay-Zohar H., Israelson A., Abu-Hamad S., Shoshan-Barmatz V. 2004. In self-defense: Hexokinase promotes VDAC closure and prevents mitochondria-mediated apoptotic cell death. Biochem. J. 377:347–355

    Article  PubMed  Google Scholar 

  2. Babcock D.F., Hille B. 1998. Mitochondrial oversight of cellular Ca2+ signaling. Curr. Opin. Neurobiol. 8:398–404

    Article  PubMed  Google Scholar 

  3. Bahamonde M.I., Fernandez-Fernandez J.M., Francesc X.G., Vazquez E., Valverde M.A. 2003. Plasma membrane voltage-dependent anion channel mediates antiestrogen-activated maxi Cl current in C1300 neuroblastoma. J. Biol. Chem. 278:33284–33289

    Article  PubMed  Google Scholar 

  4. Bassani R.A., Bassani J.W., Bers D.M. 1993. Ca2+ cycling between sarcoplasmic reticulum and mitochondria in rabbit cardiac myocytes. J. Physiol. 460:603–621

    PubMed  Google Scholar 

  5. Bathori G., Szabo L, Schmehle I., Tombola F., De Pinto V., Zoratti M. 1998. Novel aspects of the electrophysiology of mitochondrial porin Biochem. Biophys. Res. Commun. 243:258–263

    Article  PubMed  Google Scholar 

  6. Benz R. 1994. Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim. Biophys. Acta 1197:167–196

    PubMed  Google Scholar 

  7. Berry M.D., Boulton A.A. 2000. Glyceraldehyde-3-phosphate dehydrogenase and apoptosis. J. Neurosci. Res. 60:150–154

    Article  PubMed  Google Scholar 

  8. Beutner C., Ruck A., Riede B., Brdiczka D. 1998. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim. Biophys. Acta 1368:7–18

    PubMed  Google Scholar 

  9. Blachly-Dyson E., Peng S., Colombini M., Forte M. 1990. Selectivity changes in site-directed mutants of the VDAC ion channel: structural implications. Science 247:1233–1236

    PubMed  Google Scholar 

  10. Brdiczka D., Kaldis P., Wallimann T. 1994. In vitro complex formation between the octamer of mitochondrial creatine kinase and porin. J. Biol. Chem. 269:27640–27644

    PubMed  Google Scholar 

  11. Buettner R., Papoutsoglou G., Scemes E., Spray D.C., Dermietzel R. 2000. Evidence for secretory pathway localization of a voltage-dependent anion channel isoform. Proc. Natl. Acad. Sci. USA 97:3201–3206

    Article  PubMed  Google Scholar 

  12. Bureau M.H., Khrestchatisky M., Heeren M., Zambrowicz E.B., Kim H., Grisar T.H., Colombini M., Tobin A.J., Olsen R.W. 1992. Isolation and cloning of the voltage-dependent anion channel-like Mr. 36,000 polypeptide from mammalian brain. J. Biol. Chem. 267:8679–8684

    PubMed  Google Scholar 

  13. Cala S.E., Jones L.R. 1991. Phosphorylation of cardiac and skeletal muscle calsequestrin isoforms by casein kinase II. Demonstration of a cluster of unique rapidly phosphorylated sites in cardiac calsequestrin. J. Biol. Chem. 266:391–398

    PubMed  Google Scholar 

  14. Casadio R., Jacoboni I., Messina A., De Pinto V. 2002. A 3D model of the voltage-dependent anion channel (VDAC). FEBS Lett. 520:1–7

    Article  PubMed  Google Scholar 

  15. Colombini M. 2004. VDAC: The channel at the interface between mitochondria and the cytosol. Mol. Cell Biochem. 256–257:107–115

    Article  PubMed  Google Scholar 

  16. Coronado R., Morrissette J., Sukhareva M., Vaughan D.M. 1994. Structure and function of ryanodine receptors. Am. J. Physiol. 266:C1485–C1504

    PubMed  Google Scholar 

  17. Csordas G., Madesh M., Antonsson B., Hajnoczky G. 2002. tcBid promotes Ca2+ signal propagation to the mitochondria: control of Ca2+ permeation through the outer mitochondrial membrane. EMBO J. 21:2198–2206

    Article  PubMed  Google Scholar 

  18. Darbandi-Tonkabon R., Hastings W.R., Zeng C.M., Akk G., Manion B.D., Bracamontes J.R., Steinbach J.H., Mennerick S.J., Covey D.F., Evers A.S. 2003. Photoaffinity labeling with a neuroactive steroid analogue. 6-azi-pregnanolone labels voltage-dependent anion channel-1 in rat brain. J. Biol. Chem. 278:13196–13206

    Article  PubMed  Google Scholar 

  19. Denton R.M., McCormack J.G. 1990. Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu. Rev. Physiol. 52:451–466

    Article  PubMed  Google Scholar 

  20. De Pinto V., Messina A., Accardi R., Aiello R., Guarino F., Tomasello M.F., Tommasino M., Tasco G., Casadio R., Benz R., De Giorgi F., Ichas F., Baker M., Lawen A. 2003. New functions of an old protein: the eukaryotic porin or voltage-dependent anion selective channel (VDAC) Ital. J. Biochem. 52:17–24

    Google Scholar 

  21. Dermietzel R., Hwang T.K., Buettner R., Hofer A., Dotzler E., Kremer M., Deutzmann R., Thinnes F.P., Fishman G.I., Spray D.C. 1994. Cloning and in situ localization of a brain-derived porin that constitutes a large-conductance anion channel in astrocytic plasma membranes. Proc. Natl. Acad. Sci. USA 91:499–503

    PubMed  Google Scholar 

  22. Di-Lisa F., Gambassi G., Spurgeon H., Hansford R.G. 1993. Intramitochondrial free calcium in cardiac myocytes in relation to dehydrogenase activation. Cardiovasc. Res. 2:1840–1844

    Google Scholar 

  23. Duchen M.R., Leyssent A., Crompton M. 1998. Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single rat cardiomyocytes. J. Cell Biol. 142:975–988

    Article  PubMed  Google Scholar 

  24. Ebashi S. 1991. Excitation-contraction coupling and the mechanism of muscle contraction. Ann. Rev. Physiol. 53:1–16

    Article  Google Scholar 

  25. Epner D.E., Coffey D.S. 1996. There are multiple forms of glyceraldehyde-3-phosphate dehydrogenase in prostate cancer cells and normal prostate tissue. Prostate 28:372–378

    Article  PubMed  Google Scholar 

  26. Fanciulli M., Paggi M.G., Bruno T., Del Carlo C., Bonetto F., Gentile F.P., Floridi A. 1994. Glycolysis and growth rate in normal and in hexokinase-transfected NIH-3T3 cells. Oncol. Res. 6:405–409

    PubMed  Google Scholar 

  27. Fieck C., Benz R., Roos N., Brdiczka D. 1982. Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria. Biochim. Biophys. Acta 688:429–440

    PubMed  Google Scholar 

  28. Gechtman Z., Orr L., Shoshan-Barmatz V. 1991. Involvement of protein phosphorylation in activation of Ca2+ efflux from sarcoplasmic reticumm. Biochem. J. 276:97–102

    PubMed  Google Scholar 

  29. Gincel D., Shoshan-Barmatz V. 2004. Glutamate interacts with VDAC and modulates opening of the mitochondrial permeability transition pore. J. Bioenerg. Biomembr. 36:179–186

    Article  PubMed  Google Scholar 

  30. Gincel D., Silberberg S.D., Shoshan-Barmatz V. 2000. Modulation of the voltage-dependent anion channel (VDAC) by glutamate. J. Bioenerg. Biomembr. 32:571–583

    Article  PubMed  Google Scholar 

  31. Gincel D., Vardi N., Shoshan-Barmatz V. 2002. Retinal Voltage-Dependent Anion Channel (VDAC): Characterization and cellular localization. Invest. Ophthalmology & Visual Science. 43:2097–2104

    Google Scholar 

  32. Gincel D., Zaid H., Shoshan-Barmatz V. 2001. Calcium binding and translocation by voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem. J. 358:147–155

    Article  PubMed  Google Scholar 

  33. Gottlob K., Majewski N., Kennedy S., Kandel E., Robey R.B., Hay N. 2001. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes. Dev. 1:1406–1418

    Article  Google Scholar 

  34. Guibert B., Dermietzel R., Siemen D. 1998. Large conductance channel in plasma membranes of astrocytic cells is functionally related to mitochondrial VDAC-channel. Int. J. Biochem. Cell Biol. 30:379–391

    Article  PubMed  Google Scholar 

  35. Gunter T.E., Gunter K.K., Sheu S.S., Gavin C.E. 1994. Mitochondrial calcium transport: physiological and pathological relevance. Am. J. Physiol. 267:C313–C339

    PubMed  Google Scholar 

  36. Hajnoczky G., Csordas G., Yi M. 2002. Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 32:363–377

    Article  PubMed  Google Scholar 

  37. Han J.W., Thieleczek R., Varsanyi M., Heilmeyer L.M. 1992. Compartmentalized ATP synthesis in skeletal muscle triads. Biochemistry 31:377–384

    Article  PubMed  Google Scholar 

  38. Hodge T., Colombini M. 1997. Regulation of metabolite flux through voltage-gating of VDAC channels. J. Memb. Biol 157:271–279

    Article  Google Scholar 

  39. Holden M.J., Colombini M. 1988. The mitochondrial outer membrane channel, VDAC, is modulated by a soluble protein. FEES Lett. 241:105–109

    Article  Google Scholar 

  40. Horn A., Reymann S., Thinnes F.P. 1998. Studies on human porin. XVI: Polyamines reduce the voltage dependence of human VDAC in planar lipid bilayers–spermine and spermidine inducing asymmetric voltage gating on the channel. Mol. Genet. Metab. 63:239–242

    Article  PubMed  Google Scholar 

  41. Jencks W.P. 1992. Coupling of hydrolysis of ATP and the transport of Ca2+ by the calcium ATPase of sarcoplasmic reticulum. Biochem. Soc. Trans. 20:555–559

    PubMed  Google Scholar 

  42. Junankar P.R., Dulhunty A.F., Curtis S.M., Pace S.M., Thinnes F.P. 1995. Porin-type 1 proteins in sarcoplasmic reticulum and plasmalemma of striated muscle fibers. J. Muscle Res. Cell Motility 16:595–610

    Article  Google Scholar 

  43. Jurgens L., Ilsemann P., Kratzin H.D., Hesse D., Eckart K., Thinnes F.P., Hilschamann N. 1994. Studies on human porin IV. The primary structures of “Porin 31HM” purified from human skeletal muscle membranes and of “porin 31HL” derived from human B lymphocyte membranes are identical. Biol. Chem. Hoppe-Seyler 375:315–322

    PubMed  Google Scholar 

  44. Jurgens S.L., Kleineke J., Brdiczka D., Thinnes P.M., Hilschmann N., 1995. Localization of type-1 porin channel (VDAC) in the sarcoplasmic reticulum Biol. Chem. Hoppe-Seyler 376:685–689

    PubMed  Google Scholar 

  45. Lewis T.M., Roberts M.I., Bretag A.H. 1994. Immunolabelling of VDAC, the mitochondrial voltage-dependent anion channel, on sarcoplasmic reticulum from amphibian skeletal muscle. Neurosci. Lett. 181:83–86

    Article  PubMed  Google Scholar 

  46. Linden M., Karlsson G. 1996. Identification of porin as a binding site for MAP2. Biochem. Biophys. Res. Commun. 218:833–836

    Article  PubMed  Google Scholar 

  47. Liu M.Y., Colombini M. 1994. Characterization and partial purification of the VDAC channel modulating protein from calf liver mitochondria. Biochim. Biophys. Acta 1185:203–212

    PubMed  Google Scholar 

  48. MacLennan D.H., Kranias E.G. 2003. Phospholamban: a crucial regulator of cardiac contractility. Ate. Rev. Mol. Cell Biol. 4:566–577

    Article  PubMed  Google Scholar 

  49. MacLennan D.H., Rice W.J., Green N.M. 1997. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J. Biol. Chem. 272:28815–28818

    Article  PubMed  Google Scholar 

  50. Mannella C.M., Buttle K., Rath B.K., Marko M. 1998. Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. BioFactors 8:225–228

    PubMed  Google Scholar 

  51. McEnery M.W. 1992. The mitochondrial benzodiazepine receptor: evidence for association with the voltage-dependent anion channel (VDAC). J. Bioenerg. Biomembr. 24:63–69

    Article  PubMed  Google Scholar 

  52. Meissner G. 2002. Regulation of mammalian ryanodine receptors. Front Biosci. 7:2072–2080

    Google Scholar 

  53. Nakashima R.A., Mangan P.S., Colombini M., Pedersen P.L. 1986. Hexokinase receptor complex in hepatoma mitochondria: evidence from N,N′-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry 25:1015–1021

    Article  PubMed  Google Scholar 

  54. Okada S.F., O’Neal W.K., Huang P., Nicholas R.A., Ostrowski L.E., Craigen W.J., Lazarowski E.R., Boucher R.C. 2004. Voltage-dependent anion channel-1 (VDAC-1) contributes to ATP release and cell volume regulation in murine cells. J. Gen. Physiol. 124:513–526

    Article  PubMed  Google Scholar 

  55. Opperdoes F.R. 1988. Glycosomes may provide clues to the import of peroxisomal proteins. Trends Biochem. Sci. 13:255–260

    Article  PubMed  Google Scholar 

  56. Orr I., Gechtman Z., Shoshan-Barmatz V. 1991. Characterization of Ca2+-dependent endogenous phosphorylation of 160,000 and 150,000 dalton proteins of sarcoplasmic reticulum. Biochem. J. 276:87–97

    Google Scholar 

  57. Orr L, Shoshan-Barmatz V. 1996. Modulation of the skeletal muscle ryanodine receptor by phosphorylation of 160/150-kDa proteins of the sarcoplasmic reticulum. Biochem. Biophys. Acta. 1283:75–80

    Google Scholar 

  58. Parolini G., Tombola L., Szabo F., Messina L., Oliva A., De Pinto M., Lisanti V., Sargiacomo M., Zoratti M. 1999. Porin is present in the plasma membrane where it is concentrated in caveolae and caveolae-related domains. J. Biol. Chem. 274:29607–29612

    Article  PubMed  Google Scholar 

  59. Pastorino J.G., Shulga N., Hoek J.B. 2002. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 277:7610–7618

    Article  PubMed  Google Scholar 

  60. Pedersen P.L., Mathupala S., Rempel A., Geschwind J.F., Ko Y.H. 2002. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim. Biophys. Acta 1555:14–20

    PubMed  Google Scholar 

  61. Petersen O.H. 2002. Calcium signal compartmentalization. Biol. Res. 35:177–182

    PubMed  Google Scholar 

  62. Pierce G.N., Philipson K.D. 1985. Binding of glycolytic enzymes to cardiac sarcolemmal and sarcoplasmic reticular membranes. J. Biol. Chem. 260:6862–6870

    PubMed  Google Scholar 

  63. Rapizzi E., Pinton P., Szabadkai G., Wieckowski M.R., Vandecasteele G., Baird G., Tuft R.A., Fogarty K.E., Rizzuto R. 2002. Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J. Cell Biol. 159:613–624

    Article  PubMed  Google Scholar 

  64. Reymann S., Flàrke H., Heiden M., Jakob C., Stadtmuller U., Steinacker P., Lalk V.E., Pardowitz I., Thinnes F.P. 1995. Further evidence for multitological localization of mammalian porin (VDAC) in the plasmalemma forming part of a chloride channel complex affected in cystic fibrosis and encephalomyopathy. Biochem. Molec. Med. 54:75–87

    Article  Google Scholar 

  65. Reymann S., Haas W., Krick W., Burckhardt G., Thinnes F.P. 1998. Endosomes: another extra-mitochondrial location of type-1 porin/voltage-dependent anion-selective channels. Pfluegers. Arch. 43:478–480

    Article  Google Scholar 

  66. Rizzuto R., Bernardi P., Pozzan T. 2000. Mitochondria as all-round players of the calcium game. J. Physiol. 529:37–47

    Article  PubMed  Google Scholar 

  67. Rizzuto R., Brini M., Murgia M., Pozzan T. 1993. Microdomains with high Ca2+ close to IP3- sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    Google Scholar 

  68. Rizzuto R., Pinton P., Carrington W., Fay F.S., Fogarty K.E., Lifshitz L.M., Tuft R.A., Pozzan T. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  PubMed  Google Scholar 

  69. Rostovtseva T., Bezrukov S.M. 1998. ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys. J. 74:2365–2373

    PubMed  Google Scholar 

  70. Rostovtseva T.K., Antonsson B., Suzuki M., Youle R.J., Colombini M., Bezrukov S.M. 2004. Bid, but Not Bax, Regulates VDAC Channels. J. Biol. Chem. 279:13575–13583

    Article  PubMed  Google Scholar 

  71. Rutter G.A., Rizzuto R. 2000. Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem. Sci. 25:215–221

    Article  PubMed  Google Scholar 

  72. Schwarzer C., Barnikol-Watanabe S., Thinnes F.P., Hilschmann N. 2002. Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74. Int. J. Biochem. Cell Biol. 34:1059–1070

    Article  PubMed  Google Scholar 

  73. Shafir I., Feng W., Shoshan-Barmatz V. 1998. DCCD interaction with the voltage-dependent anion channel from sarcoplasmic reticulum. Eur. J. Biochem. 253:627–636

    Article  PubMed  Google Scholar 

  74. Shafir I., Feng W., Shoshan-Barmatz V. 1998. Voltage-dependent anion channel proteins in synaptosomes of the Torpedo electric organ: immunolocalization, purification and characterization. J. Bioenerg. Biomemb. 30:499–509

    Article  Google Scholar 

  75. Shimizu S., Ide T., Yanagida T., Tsujimoto Y. 2000. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol Chem. 275:12321–12325

    Article  PubMed  Google Scholar 

  76. Shimizu S., Konishi A., Kodama T., Tsujimoto Y. 2000. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA 97:3100–3105

    Article  PubMed  Google Scholar 

  77. Shimizu S., Matsuoka Y., Shinohara Y., Yoneda Y., Tsujimoto Y. 2001. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J. Cell. Biol. 152:237–250

    Article  PubMed  Google Scholar 

  78. Shimizu S., Narita M., Tsujimoto Y. 1999. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    Google Scholar 

  79. Shoshan-Barmatz V., Ashley R. 1998. The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. Int. Rev. Cytol. 183:185–270

    PubMed  Google Scholar 

  80. Shoshan-Barmatz V., Gincel D. 2003. The Voltage-Dependent Anion Channel: Characterization, modulation and role in mitochondrial function in cell life and death. Cell Biochem. Biophys. 39:279–292

    Article  PubMed  Google Scholar 

  81. Shoshan-Barmatz V., Hadad N., Feng W., Shafir L, Orr L, Varsanyi M., Heilmeyer M.G. 1996. VDAC/porin is present in sarcplasmic reticulum from skeletal muscle. FEES Lett. 386:205–210

    Article  Google Scholar 

  82. Shoshan-Barmatz V., Orr L, Varsanyi M., Heilmeyer L.M.G. 1996. The identification of 150/160kDa proteins their kinase and their association with the ryanodine receptor/ Ca2+ channle of sarcoplasmic reticulum. Biochim. Biophys. Acta. 1283:80–89

    PubMed  Google Scholar 

  83. Shoshan-Barmatz V., Zalk R., Gincel D., Vardi N. 2004. Cellular and sub-cellular localization of VDAC in cerebellum and its function in ER-Mitochondria cross-talk. Biochim. Biophys. Acta 1657:105–114

    PubMed  Google Scholar 

  84. Simpson P.B., Russel J.T. 1996. Mitochondria support inositol 1,4,5-trisphoshpate-mediated Ca2+ waves in cultured oligodendrocytes. J. Biol. Chem. 271:33493–33501

    Article  PubMed  Google Scholar 

  85. Singh P., Salih M., Leddy J.J., Tuana B.S. 2004. The muscle-specific calmodulin-dependent protein kinase assembles with the glycolytic enzyme complex at the sarcoplasmic reticulum and modulates the activity of glyceraldehyde-3-phosphate dehydrogenase in a Ca2+/calmodulin-dependent manner. J. Biol. Chem. 279:35176–35182

    Article  PubMed  Google Scholar 

  86. Sirover M.A. 1996. Emerging new functions of the glycolytic protein, Glyceraldehyde-3-phosphate dehydrogenase in mammalian cells. Life Sci 58:2271–2277

    Article  PubMed  Google Scholar 

  87. Sirover M.A. 1997. Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrgenase in normal cell function and in cell pathology. J. Cell Biochem. 66:133–140

    Article  PubMed  Google Scholar 

  88. Thinnes F.P. 1992. Evidence for extra mitochondrial localization of the VDAC/porin channel in eucaryotic cells. J. Bioenerg. Biomemb. 24:71–75

    Article  Google Scholar 

  89. Vander Heiden M.G., Li X.X., Gottleib E., Hill R.B., Thompson C.B., Colombini M. 2001. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem. 276:19414–19419

    Article  PubMed  Google Scholar 

  90. Vyssokikh M.Y., Brdiczka D. 2003. The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochimica Polonica 50:389–404

    PubMed  Google Scholar 

  91. Weirenga R.K., Swinkels B., Michels P.A.M., Osinga K., Misset O., Van Beeumen J., Gibson W.C., Postma J.P.M., Borst P., Opperdoes F.R., Hol W.G.J. 1987. Common elements on the surface of glycolytic enzymes from Trypanosoma brucei may serve as topogenic signals for import into glycosomes. EMBO J. 6:215–221

    PubMed  Google Scholar 

  92. Xie G., Wilson J.E. 1988. Rat brain hexokinase: Hydrophobic amino-terminus of the mitochondrially bound enzyme is inserted in the lipid bilayer. Arch. Biochem. Biophy. 267:803–810

    Article  Google Scholar 

  93. Xu K.Y., Zweier J.L., Becker L.C. 1995. Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ. Res. 77:88–97

    PubMed  Google Scholar 

  94. Yu W.H., Forty M. 1996. Is there VDAC in cell compartment other than mitochondria? J. Bioenerg. Biomembr. 28:93–100

    PubMed  Google Scholar 

  95. Zalk R., Israelson A., Garty E., Azoulay-Zohar H., Shoshan-Barmatz V. 2005. Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem. J. 383:73–83

    Google Scholar 

  96. Zizi M., Forte M., Blachly-Dyson E., Colombini M. 1994. NADH regulates the gating of VDAC, the mitochondrial outer membrane channel. J. Biol. Chem. 269:1614–1616

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants from the Israel Science Foundation, administrated by The Israel Academy of Science and Humanities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Shoshan-Barmatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoshan-Barmatz, V., Israelson, A. The Voltage-dependent Anion Channel in Endoplasmic/Sarcoplasmic Reticulum: Characterization, Modulation and Possible Function. J Membrane Biol 204, 57–66 (2005). https://doi.org/10.1007/s00232-005-0749-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0749-4

Keywords

Navigation