[go: up one dir, main page]

Skip to main content
Log in

The Feline Josephus Problem

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

In the classic Josephus problem, elements 1,2,…,n are placed in order around a circle and a skip value k is chosen. The problem proceeds in n rounds, where each round consists of traveling around the circle from the current position, and selecting the kth remaining element to be eliminated from the circle. After n rounds, every element is eliminated. Special attention is given to the last surviving element, denote it by j. We generalize this popular problem by introducing a uniform number of lives , so that elements are not eliminated until they have been selected for the th time. We prove two main results: 1) When n and k are fixed, then j is constant for all values of larger than the nth Fibonacci number. In other words, the last surviving element stabilizes with respect to increasing the number of lives. 2) When n and j are fixed, then there exists a value of k that allows j to be the last survivor simultaneously for all values of . In other words, certain skip values ensure that a given position is the last survivor, regardless of the number of lives. For the first result we give an algorithm for determining j (and the entire sequence of selections) that uses O(n 2) arithmetic operations.

“un gatto ha sette vite”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rouse Ball, W.W., Coxeter, H.S.M.: Mathematical Recreations and Essays. Dover, New York (1987)

    Google Scholar 

  2. Biggs, N.L.: The roots of combinatorics. Hist. Math. 6(2), 109–136 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cardano, G.: Practica Arithmetice et Mensurandi Singularis (1539)

    Google Scholar 

  4. Dowdy, J., Mays, M.E.: Josephus permutations. J. Comb. Math. Comb. Comput. 6, 125–130 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Gardner, M.: Mathematical Puzzles of Sam Loyd, vol. 2. Dover, New York (1960)

    Google Scholar 

  6. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  7. Halbeisen, L., Hungerbühler, N.: The Josephus problem. J. Théor. Nr. Bordx. 9, 303–318 (1997)

    Article  MATH  Google Scholar 

  8. Herstein, I.N., Kaplansky, I.: Matters Mathematical. Harper & Row, New York (1974)

    Google Scholar 

  9. Jakobczyk, F.: On the generalized Josephus problem. Glasg. Math. J. 14, 168–173 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Josephus, T.F.: The Jewish War. 75 (1737), transl. by William Whiston. ISBN 0-14-044420-3

  11. Lloyd, E.L.: An o(nlog m) algorithm for the Josephus problem. J. Algorithms 4(3), 262–270 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Odlyzko, A.M., Wilf, H.S.: Functional iteration and the Josephus problem. Glasg. Math. J. 33(2), 235–240 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Robinson, W.J.: The Josephus problem. Math. Gaz. 4, 47–52 (1960)

    Article  Google Scholar 

  14. Ruskey, F., Williams, A.: The feline Josephus problem. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 343–354. Springer, Berlin (2010)

    Google Scholar 

  15. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. http://www.research.att.com/~njas/sequences/A003418

  16. Thérialut, N.: Generalizations of the Josephus problem. Util. Math. 58, 161–173 (2000)

    MathSciNet  Google Scholar 

  17. Woodhouse, D.: The extended Josephus problem. Rev. Mat. Hisp.-Am. 4(33), 207–218 (1973)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Ruskey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruskey, F., Williams, A. The Feline Josephus Problem. Theory Comput Syst 50, 20–34 (2012). https://doi.org/10.1007/s00224-011-9343-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-011-9343-6

Keywords

Navigation