Abstract
We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers-Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the category of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Chern class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.
Similar content being viewed by others
References
Adams J.F.: Lectures on Lie groups. W. A. Benjamin, Inc., New York-Amsterdam (1969)
Atiyah M.F.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181–207 (1957)
Atiyah M.: Topological quantum field theories. Inst. Hautes Etudes Sci. Publ. Math. 68, 175 (1989)
Baum, H.: Eichfeldtheorie: Eine Einführung in die Differentialgeometrie auf Faserbündeln. Springer, Berlin (2009)
Bongaarts P.J.M.: Maxwell’s equations in axiomatic quantum field theory. 1. Field tensor and potentials. J. Math. Phys. 18, 1510 (1977)
Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541 (2009). [arXiv:0901.2038 [math-ph]]
Benini, M., Dappiaggi, C., Hack, T.-P.: Quantum field theory on curved backgrounds—A Primer. Int. J. Mod. Phys. A 28, 1330023 (2013). [arXiv:1306.0527 [gr-qc]]
Benini, M., Dappiaggi, C., Schenkel, A.: Quantum field theory on affine bundles. Ann. Henri Poincaré 15, 17–211(2014). [arXiv:1210.3457 [math-ph]]
Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). [math-ph/0112041]
Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. Springer Proc. Math. 17, 359 (2011). [arXiv:1104.1158 [math-ph]]
Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorenzian manifolds and quantization. Zürich, Switzerland: Eur. Math. Soc. (2007). [arXiv:0806.1036 [math.DG]]
Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic space-times. Commun. Math. Phys. 257, 43 (2005). [gr-qc/0401112]
Bott R., Tu L.W.: Differential forms in algebraic topology. Graduate Texts in Mathematics, 82, pp. xiv+331. Springer, New York, Berlin (1982)
Dimock J.: Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4, 223 (1992)
Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101, 265 (2012). [arXiv:1104.1374 [gr-qc]]
Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes. Rev. Math. Phys. 25, 1350002 (2013). [arXiv:1106.5575 [gr-qc]]
Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25, 1350008 (2013). [arXiv:1201.3295 [math-ph]]
Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. Rev. Math. Phys. 25, 1330003 (2013). [arXiv:1203.0261 [math-ph]]
Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697 (2013). [arXiv:1110.5232 [math-ph]]
Fewster, C.J., Verch, R.: Dynamical locality and covariance: What makes a physical theory the same in all spacetimes? Ann. Henri Poincare 13, 1613 (2012). [arXiv:1106.4785 [math-ph]]
Harder, G.: Lectures on algebraic geometry I. Sheaves, cohomology of sheaves, and applications to Riemann surfaces. Aspects of Mathematics, E 35, pp. xiv+299. Vieweg + Teubner Verlag, Wiesbaden (2011)
Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008). [arXiv:0705.3340 [gr-qc]]
Hack, T.-P., Schenkel, A.: Linear bosonic and fermionic quantum gauge theories on curved spacetimes. Gen. Rel. Grav. 45, 877 (2013). [arXiv:1205.3484 [math-ph]]
Kolář I., Michor P.W., Slovák J.: Natural operations in differential geometry. Springer, Berlin (1993)
Kobayashi S., Nomizu K.: Foundations of differential geometry Vol. I. Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York (1996)
Marolf, D.M.: The Generalized Peierls bracket. Ann. Phys. 236, 392 (1994). [hep-th/9308150]
Peierls R.E.: The Commutation laws of relativistic field theory. Proc. Roy. Soc. Lond. A 214, 143 (1952)
Pfenning, M.J.: Quantization of the Maxwell field in curved spacetimes of arbitrary dimension. Class. Quant. Grav. 26, 135017 (2009). [arXiv:0902.4887 [math-ph]]
Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law (2012). To appear in Commun. Math. Phys. arXiv:1211.6420 [math-ph]
Strocchi F.: Gauge Problem in Quantum Field Theory. Phys. Rev. 162, 1429 (1967)
Strocchi F.: Gauge Problem in Quantum Field Theory. III. Quantization of Maxwell Equations and Weak Local Commutativity. Phys. Rev. D 2, 2334 (1970)
Verch, R.: A spin statistics theorem for quantum fields on curved space-time manifolds in a generally covariant framework. Commun. Math. Phys. 223, 261 (2001). [math-ph/0102035]
Voisin C.: Hodge theory and complex algebraic geometry I. Cambridge Studies in Advanced Mathematics, 76, pp. x+322. Cambridge University Press, Cambridge (2007)
Waldmann, S.: Geometric Wave Equations. arXiv:1208.4706 [math.DG]
Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26, 130012 (2014). arXiv:1210.4031 [math-ph]
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Rights and permissions
About this article
Cite this article
Benini, M., Dappiaggi, C. & Schenkel, A. Quantized Abelian Principal Connections on Lorentzian Manifolds. Commun. Math. Phys. 330, 123–152 (2014). https://doi.org/10.1007/s00220-014-1917-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-014-1917-0