[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Structural and electronic characterization of self-assembled molecular nanoarchitectures by X-ray photoelectron spectroscopy

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Molecular monolayers and similar nanoarchitectures are indicative of the promising future of nanotechnology. Therefore, many scientists recently devoted their efforts to the synthesis, characterization, and properties of mono- and multilayer-based systems. In this context, X-ray photoelectron spectroscopy is an important technique for the in-depth chemical and structural characterization of nanoscopic systems. In fact, it is a surface technique suitable for probing thicknesses of the same order of the photoelectron inelastic mean free paths (a few tens of ångströms) and allows one to immediately obtain qualitative and quantitative data, film thickness, surface coverage, molecule footprint, oxidation states, and presence of functional groups. Nevertheless, other techniques are important in obtaining a complete spectroscopic characterization of the investigated systems. Therefore, in the present review we report on X-ray photoelectron spectroscopy of self-assembled molecular mono- and multilayer materials including some examples on which other characterization techniques produced important results.

X-ray photoelectron spectroscopy revealed to be an important technique for an in-depth chemical and structural characterization of self-assembled molecular mono- and multi-layer materials

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. de Ruiter G, van der Boom ME (2011) Surface-confined assemblies and polymers for molecular logic. Acc Chem Res 44:563–573

    Article  CAS  Google Scholar 

  2. Urban MW (2011) Handbook of stimuli-responsive materials. Wiley-VCH, Weinheim

  3. Whittell GR, Hager MD, Schubert US, Manners I (2011) Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat Mater 10:176–188

    Article  CAS  Google Scholar 

  4. Ionov L (2010) Actively-moving materials based on stimuli-responsive polymers. J Mater Chem 20:3382–3390

    Article  CAS  Google Scholar 

  5. Shanmuganathan K, Capadona JR, Rowan SJ, Weder C (2010) Stimuli-responsive mechanically adaptive polymer nanocomposites. ACS Appl Mater Interf 2:165–174

    Google Scholar 

  6. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  7. Nandivada H, Ross AM, Lahann J (2010) Stimuli-responsive monolayers for biotechnology. Prog Polym Sci 35:141–154

    Article  CAS  Google Scholar 

  8. Yerushalmi R, Scherz A, van der Boom ME, Kraatz H-B (2005) Stimuli responsive materials: new avenues toward smart organic devices. J Mater Chem 15:4480–4487

    Article  CAS  Google Scholar 

  9. Kobatake S, Takami S, Muto H, Ishikawa T, Irie M (2007) Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446:778–781

    Article  CAS  Google Scholar 

  10. Yuan J, Xu Y, Mueller AHE (2011) One-dimensional magnetic inorganic–organic hybrid nanomaterials. Chem Soc Rev 40:640–655

    Article  CAS  Google Scholar 

  11. Grosso D, Ribot F, Boissiere C, Sanchez C (2011) Molecular and supramolecular dynamics of hybrid organic–inorganic interfaces for the rational construction of advanced hybrid nanomaterials. Chem Soc Rev 40:829–848

    Article  CAS  Google Scholar 

  12. Mehdi A, Reye C, Corriu R (2011) From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem Soc Rev 40:563–574

    Article  CAS  Google Scholar 

  13. Descalzo AB, Martinez-Manez R, Sancenon F, Hoffmann K, Rurack K (2006) The supramolecular chemistry of organic–inorganic hybrid materials. Angew Chem Int Ed 45:5924–5948

    Article  CAS  Google Scholar 

  14. Shekhah O, Liu J, Fischer RA, Wöll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081–1106

    Article  CAS  Google Scholar 

  15. Haensch C, Hoeppener S, Schubert US (2010) Chemical modification of self-assembled silane based monolayers by surface reactions. Chem Soc Rev 39:2323–2334

    Article  CAS  Google Scholar 

  16. Klajn R, Stoddart JF, Grzybowski BA (2010) Nanoparticles functionalized with reversible molecular and supramolecular switches. Chem Soc Rev 39:2203–2237

    Article  CAS  Google Scholar 

  17. Cohen H (2010) Chemically resolved electrical measurements in organic self-assembled molecular layers. J Electron Spectrosc Relat Phenom 176:24–34

    Article  CAS  Google Scholar 

  18. DiBenedetto SA, Facchetti A, Ratner MA, Marks TJ (2009) Molecular self-assembled monolayers and multilayers for organic and unconventional inorganic thin-film transistor applications. Adv Mater 21:1407–1433

    Article  CAS  Google Scholar 

  19. Gomar-Nadal E, Puigmarti-Luis J, Amabilino DB (2008) Assembly of functional molecular nanostructures on surfaces. Chem Soc Rev 37:490–504

    Article  CAS  Google Scholar 

  20. Miwa JA, Rosei F (2006) Molecular self-assembly: fundamental concepts and applications. MEMS handbook (2nd edn). CRC, Boca Raton, p 14/1–14/19

  21. Crivillers N, Mas-Torrent M, Perruchas S, Roques N, Vidal-Gancedo J, Veciana J, Rovira C, Basabe-Desmonts L, Ravoo BJ, Crego-Calama M, Reinhoudt DN (2007) Self-assembled monolayers of a multifunctional organic radical. Angew Chem Int Ed 46:2215–2219

    Article  CAS  Google Scholar 

  22. Wang L, Yoon M-H, Lu G, Yang Y, Facchetti A, Marks TJ (2006) High-performance transparent inorganic–organic hybrid thin-film n-type transistors. Nat Mater 5:893–900

    Article  CAS  Google Scholar 

  23. Chen MS, Dulcey CS, Chrisey LA, Dressick WJ (2006) Deep-UV photochemistry and patterning of (aminoethylaminomethyl)phenethylsiloxane self-assembled monolayers. Adv Funct Mater 16:774–783

    Article  CAS  Google Scholar 

  24. Onclin S, Ravoo BJ, Reinhoudt DN (2005) Engineering silicon oxide surfaces using self-assembled monolayers. Angew Chem Int Ed 44:6282–6304

    Article  CAS  Google Scholar 

  25. Tuccitto N, Ferri V, Cavazzini M, Quici S, Zhavnerko G, Licciardello A, Rampi MA (2009) Highly conductive 40-nm-long molecular wires assembled by stepwise incorporation of metal centres. Nat Mater 8:41–46

    Article  CAS  Google Scholar 

  26. Ding L, Fang Y (2010) Chemically assembled monolayers of fluorophores as chemical sensing materials. Chem Soc Rev 39:4258–4273

    Article  CAS  Google Scholar 

  27. Zhang S, Cardona CM, Echegoyen L (2006) Ion recognition properties of self-assembled monolayers (SAMs). Chem Commun 43:4461–4473

    Article  CAS  Google Scholar 

  28. Davis JJ (2005) Interfacial sensing: surface assembled molecular receptors. Chem Commun 28:3509–3513

    Article  CAS  Google Scholar 

  29. Basabe-Desmonts L, Zimmerman R, Reinhoudt D, Crego-Calama M (2005) Combinatorial method for surface-confined sensor design and fabrication. Springer Ser Chem Sens Biosens 3:169–188

    Article  CAS  Google Scholar 

  30. de Ruiter G, Tartakovsky E, Oded N, van der Boom ME (2010) Sequential logic operations with surface-confined polypyridyl complexes displaying molecular random access memory features. Angew Chem Int Ed 49:169–172

    Article  CAS  Google Scholar 

  31. Credi A (2010) The research front on molecular logic. Austr J Chem 63:145

    Article  CAS  Google Scholar 

  32. Pischel U (2010) Advanced molecular logic with memory function. Angew Chem Int Ed 49:1356–1358

    Article  CAS  Google Scholar 

  33. Deniz E, Tomasulo M, Cusido J, Yildiz I, Petriella M, Bossi ML, Sortino S, Raymo FM (2012) Photoactivatable fluorophores for super-resolution imaging based on oxazine auxochromes. J Phys Chem C 116:6058–6068

    Article  CAS  Google Scholar 

  34. de Silva AP (2008) Molecular computing: a layer of logic. Nature 454:417–418

    Article  CAS  Google Scholar 

  35. Szacilowski K (2008) Digital information processing in molecular systems. Chem Rev 108:3481–3548

    Article  CAS  Google Scholar 

  36. Guo ZQ, Zhu WH, Shen LJ, Tian H (2007) A fluorophore capable of crossword puzzles and logic memory. Angew Chem Int Ed 46:5549–5553

    Article  CAS  Google Scholar 

  37. Zharnikov M (2010) High-resolution X-ray photoelectron spectroscopy in studies of self-assembled organic monolayers. J Electron Spectrosc Relat Phenom 178–179:380–393

    Article  CAS  Google Scholar 

  38. Wallart X, de Villeneuve CH, Allongue P (2005) Truly quantitative XPS characterization of organic monolayers on silicon: study of alkyl and alkoxy monolayers on H-Si(111). J Am Chem Soc 127:7871–7878

    Article  CAS  Google Scholar 

  39. Sun Q-Y, de Smet LCPM, van Lagen B, Giesbers M, Thuene PC, van Engelenburg J, de Wolf FA, Zuilhof H, Sudhoelter EJR (2005) Covalently attached monolayers on crystalline hydrogen-terminated silicon: extremely mild attachment by visible light. J Am Chem Soc 127:2514–2523

    Article  CAS  Google Scholar 

  40. Ciampi S, James M, Le Saux G, Gaus K, Justin GJ (2012) Electrochemical “switching” of Si(100) modular assemblies. J Am Chem Soc 134:844–847

    Article  CAS  Google Scholar 

  41. Linford MR, Fenter P, Eisenberger PM, Chidsey CED (1995) Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J Am Chem Soc 117:3145–3155

    Article  CAS  Google Scholar 

  42. Gulino A, Lupo F, Condorelli GG, Mineo P, Fragalà I (2007) Viable synthetic route for a luminescent porphyrin monolayer covalently sssembled on a molecularly engineered Si(100) surface. Chem Mater 19:5102–5109

    Article  CAS  Google Scholar 

  43. Gulino A, Lupo F, Condorelli GG, Amato ME, Fragalà ME, Scarlata G (2008) Reversible photoswitching of stimuli responsive Si(100) surfaces engineered with an assembled 1-cyano-1-phenyl-2-(4′-(10-undecenyloxy)phenyl)-ethylene monolayer. J Mater Chem 18:5011–5018

    Article  CAS  Google Scholar 

  44. Graf N, Yegen E, Gross T, Lippitz A, Weigel W, Krakert S, Terfort A, Unger WES (2009) XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surf Sci 603:2849–2860

    Article  CAS  Google Scholar 

  45. Malvadkar NA, Hancock MJ, Sekeroglu K, Dressick WJ, Demirel MC (2010) An engineered anisotropic nanofilm with unidirectional wetting properties. Nat Mater 9:1023–1028

    Article  CAS  Google Scholar 

  46. Brandow SL, Chen M-S, Dulcey CS, Dressick WJ (2008) Formation of aromatic siloxane self-assembled monolayers. Langmuir 24:3888–3896

    Article  CAS  Google Scholar 

  47. Motiei L, Altman M, Gupta T, Lupo F, Gulino A, Evmenenko G, Dutta P, van der Boom ME (2008) Self-Propagating assembly of a molecular-based multilayer. J Am Chem Soc 130:8913–8915

    Article  CAS  Google Scholar 

  48. Gulino A, Gupta T, Altman M, Lo Schiavo S, Mineo PG, Fragalà IL, Evmenenko G, Dutta P, van der Boom ME (2008) Selective monitoring of parts per million levels of CO by covalently immobilized metal complexes on glass. Chem Commun 2900–2902

  49. Gulino A, Mineo P, Fragalà I (2007) Spectroscopic and morphological investigation of an optical pH meter based on a porphyrin monolayer covalently assembled on a engineered silica surface. J Phys Chem C 111:1373–1377

    Article  CAS  Google Scholar 

  50. Gulino A, Gupta T, Mineo P, van der Boom M E (2007) Selective NO× optical sensing with surface-confined osmium polypyridyl complexes. Chem Commun 4878–4880

  51. Yerushalmi R, van der Boom ME, Cohen H (2007) Chemical site capacitance: submolecular measurements and a mode. J Phys Chem 111:13652–13654

    Article  CAS  Google Scholar 

  52. Gulino A, Condorelli GG, Mineo P, Fragalà I (2005) An X-ray photoelectron spectra and atomic force microscopy characterization of silica substrates engineered with a covalently assembled siloxane monolayer. Nanotechnology 16:2170–2175

    Article  CAS  Google Scholar 

  53. Gulino A, Bazzano S, Mineo P, Scamporrino E, Vitalini D, Fragalà I (2005) Characterization, optical recognition behavior, sensitivity and selectivity of silica surfaces functionalized with a porphyrin monolayer. Chem Mater 17:521–526

    Article  CAS  Google Scholar 

  54. Chockalingam M, Darwish N, Le Saux G, Gooding JJ (2011) Importance of the indium tin oxide substrate on the quality of self-assembled monolayers formed from organophosphonic acids. Langmuir 27:2545–2552

    Article  CAS  Google Scholar 

  55. Wang Q, Moriyama H (2009) [60]-Fullerene and single-walled carbon nanotube-based ultrathin films stepwise grafted onto a self-assembled monolayer on ITO. Langmuir 25:10834–10842

    Article  CAS  Google Scholar 

  56. Imahori H, Fukuzumi S (2004) Porphyrin- and fullerene-based molecular photovoltaic devices. Adv Funct Mater 14:525–536

    Article  CAS  Google Scholar 

  57. McGuiness CL, Diehl GA, Blasini D, Smilgies D-M, Zhu M, Samarth N, Weidner T, Ballav N, Zharnikov M, Allara DL (2010) Molecular self-assembly at bare semiconductor surfaces: cooperative substrate-molecule effects in octadecanethiolate monolayer assemblies on GaAs(111), (110), and (100). ACS Nano 4:3447–3465

    Article  CAS  Google Scholar 

  58. Benitez JJ, Heredia-Guerrero JA, Salmeron M (2010) Steering the self-assembly of octadecylamine monolayers on mica by controlled mechanical energy transfer from the AFM tip. J Phys Chem C 114:12630–12634

    Article  CAS  Google Scholar 

  59. Whitehouse C, Fang J, Aggeli A, Bell M, Brydson R, Fishwick CWG, Henderson JR, Knobler CM, Owens RW, Thomson NH, Smith DA, Boden N (2005) Adsorption and self-assembly of peptides on mica substrates. Angew Chem Int Ed 44:1965–1968

    Article  CAS  Google Scholar 

  60. Simpkins BS, Hong S, Stine R, Makinen AJ, Theodore ND, Mastro MA, Eddy CR, Pehrsson PE (2010) Assembly of phosphonic acids on GaN and AlGaN. J Phys D Appl Phys 43:015303/1–015303/5

    Article  CAS  Google Scholar 

  61. Cheng Y-J, Cao F-Y, Lin W-C, Chen C-H, Hsieh C-H (2011) Self-assembled and cross-linked fullerene interlayer on titanium oxide for highly efficient inverted polymer solar cells. Chem Mater 23:1512–1518

    Article  CAS  Google Scholar 

  62. Gillich T, Benetti EM, Rakhmatullina E, Konradi R, Li W, Zhang A, Schluter AD, Textor M (2011) Assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: adsorption kinetics, surface characterization, and nonfouling properties. J Am Chem Soc 133:10940–10950

    Article  CAS  Google Scholar 

  63. Saarenpaa H, Sariola-Leikas E, Pyymaki Perros A, Kontio JM, Efimov A, Hayashi H, Lipsanen H, Imahori H, Lemmetyinen H, Tkachenko NV (2012) Assembled porphyrins on modified zinc oxide nanorods: development of model systems for inorganic–organic semiconductor interface studies. J Phys Chem C 116:2336–2343

    Article  CAS  Google Scholar 

  64. Hozumi A, McCarthy TJ (2010) Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis. Langmuir 26:2567–2573

    Article  CAS  Google Scholar 

  65. Lud SQ, Steenackers M, Jordan R, Bruno P, Gruen DM, Feulner P, Garrido JA, Stutzmann M (2006) Chemical grafting of biphenyl self-assembled monolayers on ultrananocrystalline diamond. J Am Chem Soc 128:16884–16891

    Article  CAS  Google Scholar 

  66. Zhang J, Zhao S, Yuan B, Deng K, Sun B, Qiu X (2012) Monolayered adatom aggregation induced by metallofullerene molecules on Cu(100). Surf Sci 606:78–82

    Article  CAS  Google Scholar 

  67. Lindsey JS, Bocian DF (2011) Molecules for charge-based information storage. Acc Chem Res 44:638–650

    Article  CAS  Google Scholar 

  68. Schoell SJ, Howgate J, Hoeb M, Auernhammer M, Garrido JA, Stutzmann M, Brandt MS, Sharp ID (2011) Electrical passivation and chemical functionalization of SiC surfaces by chlorine termination. Appl Phys Lett 98:182106/1–182106/3

    Article  CAS  Google Scholar 

  69. Alaboson JMP, Wang QH, Emery JD, Lipson AL, Bedzyk MJ, Elam JW, Pellin MJ, Hersam MC (2011) Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers. ACS Nano 5:5223–5232

    Article  CAS  Google Scholar 

  70. Roos M, Kunzel D, Uhl B, Huang H-H, Brandao Alves O, Hoster HE, Gross A, Behm RJ (2011) Hierarchical interactions and their influence upon the adsorption of organic molecules on a graphene film. J Am Chem Soc 133:9208–9211

    Article  CAS  Google Scholar 

  71. Lee WH, Park J, Sim SH, Lim S, Kim KS, Hong BH, Cho K (2011) Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors. J Am Chem Soc 133:4447–4454

    Article  CAS  Google Scholar 

  72. Boulanouar O, Khatyr A, Herlem G, Palmino F, Sanche L, Fromm M (2011) Soft adsorption of densely packed layers of DNA-plasmid·1,3-diaminopropane complexes onto highly oriented pyrolitic graphite designed to erode in water. J Phys Chem C 115:21291–21298

    Article  CAS  Google Scholar 

  73. Jester S-S, Schmitz D, Eberhagen F, Hoeger S (2011) Self-assembled monolayers of clamped oligo(phenylene-ethynylene-butadiynylene)s. Chem Commun 47:8838–8840

    Article  CAS  Google Scholar 

  74. Chen Q, Chen T, Wang D, Liu H-B, Li Y-L, Wan L-J (2010) Structure and structural transition of chiral domains in oligo(p-phenylenevinylene) assembly investigated by scanning tunneling microscopy. PNAS 107:2769–2774, S2769/1–S2769/3

    Article  CAS  Google Scholar 

  75. Petrovykh DY, Smith JC, Clark TD, Stine R, Baker LA, Whitman LJ (2009) Self-assembled monolayers of alkanethiols on InAs. Langmuir 25:12185–12194

    Article  CAS  Google Scholar 

  76. Arranz A, Palacio C, Garcia-Fresnadillo D, Orellana G, Navarro A, Munoz E (2008) Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization of GaN surfaces: an angle-resolved X-ray photoelectron spectroscopy study. Langmuir 24:8667–8671

    Article  CAS  Google Scholar 

  77. Briggs D, Grant JT (2003) Surface analysis by Auger and X-ray photoelectron spectroscopy. IMP, Chichester

  78. Killampalli AS, Ma PF, Engstrom JR (2005) The reaction of tetrakis(dimethylamido)titanium with self-assembled alkyltrichlorosilane monolayers possessing -OH, -NH2, and -CH3 terminal groups. J Am Chem Soc 127:6300–6310

    Article  CAS  Google Scholar 

  79. Girard-Lauriault P-L, Retzko I, Swaraj S, Matsubayashi N, Gross T, Mix R, Unger WES (2010) Non-destructive sub-surface chemical characterization of air-exposed plasma polymers by energy-resolved XPS. Plasma Process Polym 7:474–481

    Article  CAS  Google Scholar 

  80. Merzlikin SV, Tolkachev NN, Strunskus T, Witte G, Glogowski T, Wöll C, Grünert W (2008) Resolving the depth coordinate in photoelectron spectroscopy—comparison of excitation energy variation vs. angular-resolved XPS for the analysis of a self-assembled monolayer model system. Surf Sci 602:755–767

    Article  CAS  Google Scholar 

  81. Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG (2010) Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396:983–1002

    Article  CAS  Google Scholar 

  82. Baer DR, Engelhard MH, Lea AS (2005) Introduction to surface science spectra data on electron and x-ray damage: sample degradation during XPS and AES measurements. Surf Sci Spectra 10:47–56

    Article  CAS  Google Scholar 

  83. Darlatt E, Traulsen CH-H, Poppenberg J, Richter S, Kühn J, Schalley CA, Unger WES (2012) Evidence of click and coordination reactions on a self-assembled monolayer by synchrotron radiation based XPS and NEXAFS. J Electron Spectrosc Relat Phenom 185:85–89

    Article  CAS  Google Scholar 

  84. Repoux M (1992) Comparison of background removal methods for XPS. Surf Interface Anal 18:567–570

    Article  CAS  Google Scholar 

  85. Perring M, Long TR, Bowden NB (2010) Epoxidation of the surface of polydicyclopentadiene for the self-assembly of organic monolayers. J Mater Chem 20:8679–8685

    Article  CAS  Google Scholar 

  86. Lock EH, Petrovykh DY, Mack P, Carney T, White RG, Walton SG, Fernsler RF (2010) Surface composition, chemistry, and structure of polystyrene modified by electron-beam-generated plasma. Langmuir 26:8857–8868

    Article  CAS  Google Scholar 

  87. Gries WH (1996) A universal predictive equation for the inelastic mean free pathlengths of x-ray photoelectrons and Auger electrons. Surf Interface Anal 24:38–50

    Article  CAS  Google Scholar 

  88. Cui P, Seo S, Lee J, Wang L, Lee E, Min M, Lee H (2011) Nonvolatile memory device using gold nanoparticles covalently bound to reduced graphene oxide. ACS Nano 5:6826–6833

    Article  CAS  Google Scholar 

  89. Pasquali L, Terzi F, Seeber R, Nannarone S, Datta D, Dablemont C, Hamoudi H, Canepa M, Esaulov VA (2011) UPS, XPS, and NEXAFS study of self-assembly of standing 1,4-benzenedimethanethiol SAMs on gold. Langmuir 27:4713–4720

    Article  CAS  Google Scholar 

  90. Graf N, Gross T, Wirth T, Weigel W, Unger WES (2009) Application of XPS and ToF-SIMS for surface chemical analysis of DNA microarrays and their substrates. Anal Bioanal Chem 393:1907–1912

    Article  CAS  Google Scholar 

  91. Acton O, Hutchins D, Arnadottir L, Weidner T, Cernetic N, Ting GG, Kim T-W, Castner DG, Ma H, Jen AK-Y (2011) Spin-cast and patterned organophosphonate self-assembled monolayer dielectrics on metal-oxide-activated Si. Adv Mater 23:1899–1902

    Article  CAS  Google Scholar 

  92. Zhang Z, Hu R, Liu Z (2000) Formation of a porphyrin monolayer film by axial ligation of protoporphyrin IX zinc to an amino-terminated silanized glass surface. Langmuir 16:1158–1162

    Article  CAS  Google Scholar 

  93. Sarno DM, Matienzo LJ, Jones WE (2001) X-ray photoelectron spectroscopy as a probe of intermolecular interactions in porphyrin polymer thin films. Inorg Chem 40:6308–6315

    Article  CAS  Google Scholar 

  94. Offord DA, Sachs SB, Ennis MS, Eberspacher TA, Griffin JH, Chidsey CED, Collman JP (1998) Synthesis and properties of metalloporphyrin monolayers and stacked multilayers bound to an electrode via site specific axial ligation to a self-assembled monolayer. J Am Chem Soc 120:4478–4487

    Article  CAS  Google Scholar 

  95. Yamashige H, Matsuo S, Kurisaki T, Perera RCC, Wakita H (2005) Local structure of nitrogen atoms in a porphine ring of meso-phenyl substituted porphyrin with an electron-withdrawing group using X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. Anal Sci 21:635–639

    Article  CAS  Google Scholar 

  96. Chen M, Feng X, Zhang L, Ju H, Xu Q, Zhu J, Gottfried JM, Ibrahim K, Qian H, Wang J (2010) Direct synthesis of nickel(II) tetraphenylporphyrin and its interaction with a Au(111) surface: a comprehensive study. J Phys Chem C 114:9908–9916

    Article  CAS  Google Scholar 

  97. Dubey M, Bernasek SL, Schwartz J (2007) Highly sensitive nitric oxide detection using x-ray photoelectron spectroscopy. J Am Chem Soc 129:6980–6981

    Article  CAS  Google Scholar 

  98. Petraki F, Peisert H, Aygül U, Latteyer F, Uihlein J, Vollmer A, Interé T (2012) Electronic structure of FePc and interface properties on Ag(111) and Au(100). J Phys Chem C 116:11110–11116

    Article  CAS  Google Scholar 

  99. Itoh Y, Kim B, Gearba RI, Tremblay NJ, Pindak R, Matsuo Y, Nakamura E, Nuckolls C (2011) Simple formation of C60 and C60-ferrocene conjugated monolayers anchored onto silicon oxide with five carboxylic acids and their transistor applications. Chem Mater 23:970–975

    Article  CAS  Google Scholar 

  100. Bramblett AL, Boeckl MS, Hauch KD, Ratner BD, Sasaki T, Rogers JW (2002) Determination of surface coverage for tetraphenylporphyrin monolayers using ultraviolet visible absorption and x-ray photoelectron spectroscopies. Surf Interface Anal 33:506–515

    Article  CAS  Google Scholar 

  101. Lupo F, Gentile S, Ballistreri FP, Tomaselli GA, Fragalà ME, Gulino A (2010) Viable route for switching of an engineered silica surface using Cu2+ ions at sub-ppm levels. Analyst 135:2273–2279

    Article  CAS  Google Scholar 

  102. Lupo F, Capici C, Gattuso G, Notti A, Parisi MF, Pappalardo A, Pappalardo S, Gulino A (2010) Optical recognition of n-butylammonium and 1,5-pentanediammonium picrates by a calix[5]arene monolayer covalently assembled on silica substrates. Chem Mater 22:2829–2834

    Article  CAS  Google Scholar 

  103. Cristaldi DA, Fragalà I, Pappalardo A, Toscano RM, Ballistreri FP, Tomaselli GA, Gulino A (2012) Sensing of linear alkylammonium ions by a 5-pyrenoylamido-calix[5]arene solution and monolayer using luminescence measurements. J Mater Chem 22:675–683

    Article  CAS  Google Scholar 

  104. Shircliff RA, Martin IT, Pankow JW, Fennell J, Stradins P, Ghirardi ML, Cowley SW, Branz HM (2011) High-resolution X-ray photoelectron spectroscopy of mixed silane monolayers for DNA attachment. ACS Appl Mater Interfaces 3:3285–3292

    Article  CAS  Google Scholar 

  105. Reichert J, Schiffrin A, Auwarter W, Weber-Bargioni A, Marschall M, Dell’Angela M, Cvetko D, Bavdek G, Cossaro A, Morgante A, Barth JV (2010) l-Tyrosine on Ag(111). Universality of the amino acid 2D zwitterionic bonding scheme? ACS Nano 4:1218–1226

    Article  CAS  Google Scholar 

  106. Ray S, Shard AG (2011) Quantitative analysis of adsorbed proteins by x-ray photoelectron spectroscopy. Anal Chem 83:8659–8666

    Article  CAS  Google Scholar 

  107. Dietrich PM, Horlacher T, Girard-Lauriault P-L, Gross T, Lippitz A, Min H, Wirth T, Castelli R, Seeberger P, Unger WES (2011) Multimethod chemical characterization of carbohydrate-functionalized surfaces. J Carbohydr Chem 30:361–372

    Article  CAS  Google Scholar 

  108. Vahlberg C, Linares M, Villaume S, Norman P, Uvdal K (2011) Noradrenaline and a thiol analogue on gold surfaces: an infrared reflection-absorption spectroscopy, x-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy study. J Phys Chem C 115:165–175

    Article  CAS  Google Scholar 

  109. Dietrich PM, Horlacher T, Girard-Lauriault P-L, Gross T, Lippitz A, Min H, Wirth T, Castelli R, Seeberger PH, Unger WES (2011) Adlayers of dimannoside thiols on gold: surface chemical analysis. Langmuir 27:4808–4815

    Article  CAS  Google Scholar 

  110. Baio JE, Weidner T, Baugh L, Gamble LJ, Stayton PS, Castner DG (2012) Probing the orientation of electrostatically immobilized protein G B1 by time-of-flight secondary Ion spectrometry, sum frequency generation, and near-edge x-ray adsorption fine structure spectroscopy. Langmuir 28:2107–2112

    Article  CAS  Google Scholar 

  111. Motiei L, Lahav M, Gulino A, Iron MA, van der Boom ME (2010) Electrochemical characteristics of a self-propagating molecular-based assembly. J Phys Chem B 114:14283–14286

    Article  CAS  Google Scholar 

  112. Shekhah O, Hirai K, Wang H, Uehara H, Kondo M, Diring S, Zacher D, Fischer RA, Sakata O, Kitagawa S, Furukawa S, Wöll C (2011) MOF-on-MOF heteroepitaxy: perfectly oriented [Zn2(ndc)2(dabco)] n grown on [Cu2(ndc)2(dabco)] n thin films. Dalton Trans 40:4954–4958

    Article  CAS  Google Scholar 

  113. Li Y, Xiao J, Shubina TE, Chen M, Shi Z, Schmid M, Steinrück H-P, Gottfried JM, Lin N (2012) Coordination and metalation bifunctionality of Cu with 5,10,15,20-tetra(4-yridyl)porphyrin: toward a mixed-valence two-dimensional coordination network. J Am Chem Soc 134:6401–6408

    Article  CAS  Google Scholar 

  114. Poppenberg J, Richter S, Darlatt E, Traulsen CH-H, Min H, Unger WES, Schalley CA (2012) Successive coordination of palladium(II)-ions and terpyridine-ligands to a pyridyl-terminated self-assembled monolayer on gold. Surf Sci 606:367–377

    Article  CAS  Google Scholar 

  115. Cohen H (2004) Chemically resolved electrical measurements using x-ray photoelectron spectroscopy. Appl Phys Lett 85:1271–1273

    Article  CAS  Google Scholar 

  116. Nottbohm CT, Turchanin A, Beyer A, Stosch R, Goelzhaeuser A (2011) Mechanically stacked 1-nm-thick carbon nanosheets. Ultrathin layered materials with tunable optical, chemical, and electrical properties. Small 7:874–883

    Article  CAS  Google Scholar 

  117. Hada M, Ibuki S, Hontani Y, Yamamoto Y, Ichiki K, Ninomiya S, Seki T, Aoki T, Matsuo J (2011) Low-damage milling of an amino acid thin film with cluster ion beam. J Appl Phys 110:094701/1–094701/5

    Article  CAS  Google Scholar 

  118. Yamamoto S, Bluhm H, Andersson K, Ketteler G, Ogasawara H, Salmeron M, Nilsson A (2008) In situ x-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J Phys Condens Matter 20:184025 (14 pp)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author thanks the FIRB project ITALNANONET (RBPR05JH2P), MIUR: P.R.I.N. 2008 and University of Catania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Gulino.

Additional information

Published in the topical collection Characterization of Thin Films and Membranes with guest editors Daniel Mandler and Pankaj Vadgama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulino, A. Structural and electronic characterization of self-assembled molecular nanoarchitectures by X-ray photoelectron spectroscopy. Anal Bioanal Chem 405, 1479–1495 (2013). https://doi.org/10.1007/s00216-012-6394-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6394-8

Keywords