Abstract
This paper aims at determining under which conditions the semi-discrete optimal transport is twice differentiable with respect to the parameters of the discrete measure and exhibits numerical applications. The discussion focuses on minimal conditions on the background measure to ensure differentiability. We provide numerical illustrations in stippling and blue noise problems.





Similar content being viewed by others
References
Asami, Y.: A note on the derivation of the first and second derivative of objective functions in geographical optimization problems. J. Fac. Eng. Univ. Tokyo (B) 41(1), 1–13 (1991)
Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987)
Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20(1), 61–76 (1998)
Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
Brezis, H., Ciarlet, P.G., Lions, J.L.: Analyse fonctionnelle: théorie et applications, vol. 91. Dunod, Paris (1999)
CGAL, Computational Geometry Algorithms Library. http://www.cgal.org. Accessed 24 Oct 2018
de Goes, F.F.: Geometric discretization through primal-dual meshes. Ph.D. thesis, California Institute of Technology (2014)
De Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue noise through optimal transport. ACM Trans. Graph. (TOG) 31(6), 171 (2012)
Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44(1), 102–119 (2006)
Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)
Du, Q., Gunzburger, M.: Grid generation and optimization based on centroidal Voronoi tessellations. Appl. Math. Comput. 133(2), 591–607 (2002)
Flamary, R., Cuturi, M., Courty, N., Rakotomamonjy, A.: Wasserstein discriminant analysis. arXiv preprint arXiv:1608.08063 (2016)
Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. Springer, Berlin (2007)
Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186(2), 456–497 (2004)
Henrot, A., Pierre, M.: Variation et optimisation de formes: une analyse géométrique, vol. 48. Springer, Berlin (2006)
Iri, M., Murota, K., Ohya, T.: A fast Voronoi-diagram algorithm with applications to geographical optimization problems. In: Thoft-Christensen, P. (ed.) System Modelling and Optimization, pp. 273–288. Springer, Berlin (1984)
Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)
Kantorovich, L.V.: On a problem of Monge. C. R. (Doklady) Acad. Sci. URSS (NS) 3, 225–226 (1948)
Kitagawa, J., Mérigot, Q., Thibert, B.: Convergence of a Newton algorithm for semi-discrete optimal transport. J. Eur. Math. Soc. (JEMS) (to appear)
Lévy, B.: A numerical algorithm for l2 semi-discrete optimal transport in 3D. ESAIM Math. Model. Numer. Anal. 49(6), 1693–1715 (2015)
Lévy, B., Liu, Y.: \(L_p\) centroidal Voronoi tessellation and its applications. ACM Trans. Graph. (TOG) 29, 1–11 (2010)
Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.M., Lu, L., Yang, C.: On centroidal Voronoi tessellation, energy smoothness and fast computation. ACM Trans. Graph. (ToG) 28(4), 101 (2009)
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. theory 28(2), 129–137 (1982)
Mérigot, Q.: A comparison of two dual methods for discrete optimal transport. In: Geometric Science of Information, pp. 389–396. Springer (2013)
Mérigot, Q., Meyron, J., Thibert, B.: An algorithm for optimal transport between a simplex soup and a point cloud. SIAM J. Imaging Sci. 11(2), 1363–1389 (2018)
Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris (1781)
Pages, G., Wilbertz, B.: Optimal Delaunay and Voronoi quantization schemes for pricing American style options. In: Carmona, R., Del Moral, P., Hu, P., Oudjane, N. (eds.) Numerical Methods in Finance, pp. 171–213. Springer, Berlin (2012)
Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)
Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
Solomon, J., Rustamov, R., Leonidas, G., Butscher, A.: Wasserstein propagation for semi-supervised learning. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 306–314 (2014)
Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Society, Providence (2003)
Wang, W., Slepčev, D., Basu, S., Ozolek, J.A., Rohde, G.K.: A linear optimal transportation framework for quantifying and visualizing variations in sets of images. Int. J. Comput. Vis. 101(2), 254–269 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de Gournay, F., Kahn, J. & Lebrat, L. Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure. Numer. Math. 141, 429–453 (2019). https://doi.org/10.1007/s00211-018-1000-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-018-1000-4