[go: up one dir, main page]

Skip to main content
Log in

A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We establish an asymptotic representation formula for the steady state current perturbations caused by internal corrosive boundary parts of small surface measure. Based on this formula we design a non-iterative method of MUSIC (multiple signal classification) type for localizing the corrosive parts from voltage-to-current observations. We perform numerical experiments to test the viability of the algorithm and the results clearly demonstrate that the algorithm works well even in the presence of relatively high noise ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammari H. and Kang H. (2003). High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM J. Math. Anal. 34: 1152–1166

    Article  MATH  MathSciNet  Google Scholar 

  • Banks H.T., Joyner M.L., Wincheski B. and Winfree W.P. (2002). Real time computational algorithms for eddy-current-based damage detection. Inverse Probl. 18: 795–823

    Article  MATH  MathSciNet  Google Scholar 

  • Brühl M., Hanke M. and Vogelius M.S. (2003). A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. 93: 635–654

    Article  MATH  MathSciNet  Google Scholar 

  • Buttazzo G. and Kohn R.V. (1988). Reinforcement by a thin layer with oscillating thickness. Appl. Math. Opt. 16: 247–261

    Article  MathSciNet  Google Scholar 

  • Cheney M. (2001). The linear sampling method and the MUSIC algorithm. Inverse Probl. 17: 591–595

    Article  MATH  MathSciNet  Google Scholar 

  • Colton D. and Kirsch A. (1996). A simple method for solving inverse scattering problems in the resonance region. Inverse Probl. 12: 383–393

    Article  MATH  MathSciNet  Google Scholar 

  • Folland G.B. (1976). Introduction to Partial Differential Equations. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Inglese G. (1997). An inverse problem in corrosion detection. Inverse Probl. 13: 977–994

    Article  MATH  MathSciNet  Google Scholar 

  • Luong B. and Santosa F. (1998). Quantitative imaging of corrosion inplates by eddy current methods. SIAM J. Appl. Math. 58: 1509–1531

    Article  MATH  MathSciNet  Google Scholar 

  • Kang H. and Seo J.K. (1996). Layer potential technique for the inverse conductivity problem. Inverse Probl. 12: 267–278

    Article  MATH  MathSciNet  Google Scholar 

  • Kang, H., Seo, J.K.: Recent progress in the inverse conductivity problem with single measurement. In: Inverse Problems and Related Fields. CRC, Boca Raton, pp. 69–80 (2000)

  • Kaup P. and Santosa F. (1995). Nondestructive evaluation of corrosion damage using electrostatic measurements. J. Nondestruct. Eval. 14: 127–136

    Article  Google Scholar 

  • Kaup P., Santosa F. and Vogelius M. (1996). A method for imaging corrosion damage in thin plates from electrostatic data. Inverse Probl. 12: 279–293

    Article  MATH  Google Scholar 

  • Kirsch A. (2002). The MUSIC algorithm and the factorisation method in inverse scattering theory for inhomogeneous media. Inverse Probl. 18: 1025–1040

    Article  MATH  MathSciNet  Google Scholar 

  • Stein E.M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Therrien C.W. (1992). Discrete Random Signals and Statistical Signal Processing. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Vogelius M. and Xu J. (1998). A nonlinear elliptic boundary value problem related to corrosion modelling. Q. Appl. Math. 56: 479–505

    MATH  MathSciNet  Google Scholar 

  • Yang X., Choulli M. and Cheng J. (2005). An iterative BEM for the inverse problem of detecting corrosion in a pipe. Numer. Math. J. Chin. Univ. 14: 252–266

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeonbae Kang.

Additional information

H. Ammari is partially supported by the Brain Pool Korea Program at Seoul National University, H. Kang is partially supported by KOSEF grant R01-2006-000-10002-0, E. Kim is supported by BK21 Math. Division at Seoul National University, and M.S. Vogelius is partially supported by NSF grant DMS-0604999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammari, H., Kang, H., Kim, E. et al. A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements. Numer. Math. 108, 501–528 (2008). https://doi.org/10.1007/s00211-007-0130-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0130-x

Mathematics Subject Classification (2000)

Navigation