Summary
This paper constructs an adaptive algorithm for ordinary differential equations and analyzes its asymptotic behavior as the error tolerance parameter tends to zero. An adaptive algorithm, based on the error indicators and successive subdivision of time steps, is proven to stop with the optimal number, N, of steps up to a problem independent factor defined in the algorithm. A version of the algorithm with decreasing tolerance also stops with the total number of steps, including all refinement levels, bounded by \(\mathcal O(N)\). The alternative version with constant tolerance stops with \(\mathcal O(N\ {\rm log}\ N)\) total steps. The global error is bounded by the tolerance parameter asymptotically as the tolerance tends to zero. For a p-th order accurate method the optimal number of adaptive steps is proportional to the p-th root of the \({{L^{{\frac{{1}}{{p+1}}}}}}\) quasi-norm of the error density, while the number of uniform steps, with the same error, is proportional to the p-th root of the larger L 1-norm of the error density.
Similar content being viewed by others
References
Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg. 142, 1–88 (1997)
Babuška, I., Miller, A., Vogelius, M.: Adaptive methods and error estimation for elliptic problems of structural mechanics. In: Adaptive computational methods for partial differential equations SIAM, Philadelphia, Pa., 1983, pp. 57–73
Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one- dimensional boundary value problems. Numer. Math. 44(1), 75–102 (1984)
Bakhvalov, N.S.: On the optimality of linear methods for operator approximation in convex classes of functions. USSR Comput. Math. and Math. Phys. 11, 244–249 (1971)
Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4(4), 237–264 (1996)
Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 1–102 (2001)
Böttcher, K., Rannacher, R.: Adaptive error control in solving ordinary differential equations by the discontinuous Galerkin method. Preprint, 1996
Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comp. 70(233), 25–75 (2001)
Dahlquist, G., Björk, Å.: Numerical Methods. Prentice-Hall, 1974
DeVore, R.A.: Nonlinear approximation, Acta Numerica, 51–150 (1998)
Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)
Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)
Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica, 105–158 (1995)
Estep, D.: A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal. 32, 1–48 (1995)
Estep, D., Hodges, D., Warner, M.: Computational error estimates and adaptive error control for a finite element solution of launch vehicle trajectrory problems. SIAM J. Sci. Comput. 21, 1609–1631 (2000)
Estep, D., Johnson, C.: The pointwise computability of the Lorenz system. Math. Models Methods Appl. Sci. 8, 1277–1305 (1998)
Gao, F.: Probabilistic analysis of numerical integration algorithms. J. Complexity 7(1), 58–69 (1991)
Harrier, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, (Springer-Verlag, 1993)
Higham, D.J., Higham, N.J.: Matlab Guide, (Society for Industrial and Applied Mathematics, 2000)
Johnson, C.: Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 25, 908–926 (1988)
Johnson, C., Szepessy, A.: Adaptive finite element methods for conservation laws based on a posteriori error estimates. Commun. Pure Appl. Math. 48, 199–234 (1995)
Lamba, H., Stuart, A.M.: Convergence results for the MATLAB ODE23 routine. BIT 38(4), 751–780 (1998)
Logg, A.: Multi-adaptive Galerkin methods for ODEs. (Licentiate thesis, ISSN 0347–2809, Chalmers University of Technology, 2001). http://www.md.chalmers.se/Centres/Phi/preprints/index.html.
Lorenz, E.N.: Deterministic non-periodic flows. J. Atmos. Sci. 20, 130–141 (1963)
Moon, K.-S.: Convergence rates of adaptive algorithms for deterministic and stochastic differential equations. (Licentiate thesis, ISBN 91-7283-196-0, Royal Institute of Technology, 2001). http://www.nada.kth.se/∼moon/paper.html.
Moon, K.-S., von Schwerin, E., Szepessy, A., Tempone, R.: Convergence rates for adaptive finite element approximation of partial differential equations work in progress.
Moon, K.-S., Szepessy, A., Tempone, R., Zouraris, G.E.: Hyperbolic differential equations and adaptive numerics. In: Theory and numerics of differential equations (Eds. J.F. Blowey, J.P. Coleman, A.W. Craig, Durham 2000, Springer Verlag, 2001)
Moon, K.-S., Szepessy, A., Tempone, R., Zouraris, G.E. (2003) A variational principle for adaptive approximation of ordinary differential equations. Numer. Math. (in press). DOI 10.1007/s00211-003-0467-8
Morin, P., Nochetto, R., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)
Novak, E.: On the power of adaption. J. Complexity 12, 199–237 (1996)
Stuart, A.M.: Probabilistic and detereministic convergence proofs for software for initial value problems. Numerical Algorithms 14, 227–260 (1997)
Szepessy, A., Tempone, R.: Optimal control with multigrid and adaptivity. Fifth World Congress on Computational Mechanics http://wccm.tuwien.ac.at.
Szepessy, A., Tempone, R., Zouraris, G.E.: Adaptive weak approximation of stochastic differential equations. Commun. Pure Appl. Math. 54, 1169–1214 (2001)
Söderlind, G.: Automatic control and adaptive time-stepping. ANODE01 Proceedings, Numerical Algorithms
Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge University Press, Cambridge, 1998
Utumi, T., Takaki, R., Kawai, T.: Optimal time step control for the numerical solution of ordinary differential equations. SIAM J. Numer. Anal. 33, 1644–1653 (1996)
Werschulz, A.G.: The Computational Complexity of Differential and Integral Equations, An Information-Based Approach. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classification (2000): 65Y20, 65L50, 65L70
This work has been supported by the EU–TMR project HCL # ERBFMRXCT960033, the EU–TMR grant # ERBFMRX-CT98-0234 (Viscosity Solutions and their Applications), the Swedish Science Foundation, UdelaR and UdeM in Uruguay, the Swedish Network for Applied Mathematics, the Parallel and Scientific Computing Institute (PSCI) and the Swedish National Board for Industrial and Technical Development (NUTEK).
Rights and permissions
About this article
Cite this article
Moon, KS., Szepessy, A., Tempone, R. et al. Convergence rates for adaptive approximation of ordinary differential equations. Numer. Math. 96, 99–129 (2003). https://doi.org/10.1007/s00211-003-0466-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-003-0466-9