[go: up one dir, main page]

Skip to main content
Log in

Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

Balancing Neumann-Neumann methods are extented to mixed formulations of the linear elasticity system with discontinuous coefficients, discretized with mixed finite or spectral elements with discontinuous pressures. These domain decomposition methods implicitly eliminate the degrees of freedom associated with the interior of each subdomain and solve iteratively the resulting saddle point Schur complement using a hybrid preconditioner based on a coarse mixed elasticity problem and local mixed elasticity problems with natural and essential boundary conditions. A polylogarithmic bound in the local number of degrees of freedom is proven for the condition number of the preconditioned operator in the constant coefficient case. Parallel and serial numerical experiments confirm the theoretical results, indicate that they still hold for systems with discontinuous coefficients, and show that our algorithm is scalable, parallel, and robust with respect to material heterogeneities. The results on heterogeneous general problems are also supported in part by our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Le Tallec, P., Nataf, F., Vidrascu, M.: A domain decomposition preconditioner for an advection-diffusion problem. Comput. Methods Appl. Mech. Engrg. 184, 145–170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M., Sherwin, S.: Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations. Comput. Methods Appl. Mech. Engrg. 175(3–4), 243–266 (1999)

    Google Scholar 

  3. Alart, P., Barboteu, M., Le Tallec, P., Vidrascu, M.: Méthode de Schwarz additive avec solveur grossier pour problèmes non symétriques. Comp. Rend. Acad. Sci. Paris serie I 331, 399–404 (2000)

    Article  MATH  Google Scholar 

  4. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., McInnes, L.C., Smith, B.F.: PETSc home page http://www.mcs.anl.gov/petsc, 2001

  5. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: PETSc Users Manual. Technical Report ANL-95/11 - Revision 2.1.1, Argonne National Laboratory, 2001

  6. Bernardi, C., Maday, Y.: Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci 9(3), 395–414 (1999)

    Article  MATH  Google Scholar 

  7. Bramble, J.H., Pasciak, J.E.: A domain decomposition technique for Stokes problems. Appl. Numer. Math. 90(6), 251–261 (1989/90)

    Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, 1991

  9. Casarin, M.A.: Schwarz Preconditioners for Spectral and Mortar Finite Element Methods with Applications to Incompressible Fluids. PhD thesis, Dept. of Mathematics, Courant Institute of Mathematical Sciences, New York University, March 1996. Tech. Rep. 717, Department of Computer Science, Courant Institute

  10. Casarin, M.A.: Schwarz preconditioners for the spectral element discretization of the steady Stokes and Navier-Stokes equations. Numer. Math. 89(2), 307–339 (2001)

    MATH  Google Scholar 

  11. Cowsar, L.C., Mandel, J., Wheeler, M.F.: Balancing domain decomposition for mixed finite elements. Math. Comp. 64(211), 989–1015 (1995)

    MATH  Google Scholar 

  12. Dryja, M., Widlund, O.B.: Schwarz methods of Neumann–Neumann type for three-dimensional elliptic finite element problems. Comm. Pure Appl. Math. 48(2), 121–155 (1995)

    MATH  Google Scholar 

  13. Fischer, P.F.: An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations. J. Comp. Phys. 133(1), 84–101 (1997)

    Article  MATH  Google Scholar 

  14. Fischer, P.F., Miller, N.I., Tufo, H.M.: An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows. In: Bjørstad, P., Luskin, M. (eds.), Parallel Solution of PDE, number 120 in IMA Volumes in Mathematics and Its Applications, pages 1–30. Springer-Verlag, 2000

  15. Fischer, P.F., Rønquist, E.: Spectral element methods for large scale parallel Navier-Stokes calculations. Comp. Meths. Appl. Mech. Eng. 116, 69–76 (1994)

    MATH  Google Scholar 

  16. Gervasio, P.: Risoluzione delle equazioni alle derivate parziali con metodi spettrali in regioni partizionate in sottodomini. PhD thesis, Università di Milano, 1995

  17. Goldfeld, P., Pavarino, L.F., Widlund, O.B.: Balancing Neumann–Neumann methods for mixed approximations of linear elasticity. In: Pavarino, L.F., Toselli, A. (eds.), Recent Developments in Domain Decomposition Methods, volume 23 of Lecture Notes in Computational Science and Engineering, pages 53–76. Springer-Verlag, 2002

  18. Klawonn, A., Pavarino, L.F.: Overlapping Schwarz methods for mixed linear elasticity and Stokes problems. Comp. Meths. Appl. Mech. Eng. 165, 233–245 (1998)

    Article  MATH  Google Scholar 

  19. Klawonn, A., Widlund, O.B.: A domain decomposition method with Lagrange multipliers and inexact solvers for linear elasticity. SIAM J. Sci. Comp. 22(4), 1199–1219 (2000)

    MATH  Google Scholar 

  20. Klawonn, A., Widlund, O.B.: FETI and Neumann–Neumann iterative substructuring methods: Connections and new results. Comm. Pure Appl. Math. 54(1), 57–90 (2001)

    Article  MATH  Google Scholar 

  21. Le Tallec, P., Mandel, J., Vidrascu, M.: A Neumann–Neumann domain decomposition algorithm for solving plate and shell problems. SIAM J. Numer. Anal. 35(2), 836–867 (1998)

    MATH  Google Scholar 

  22. Le Tallec, P., Patra, A.: Non-overlapping domain decomposition methods for adaptive hp approximations of the Stokes problem with discontinuous pressure fields. Comp. Meths. Appl. Mech. Eng. 145, 361–379 (1997)

    Article  MATH  Google Scholar 

  23. Maday, Y., Meiron, D., Patera, A., Rønquist, E.: Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Comp. 14(2), 310–337 (1993)

    MATH  Google Scholar 

  24. Mandel, J.: Balancing domain decomposition. Comm. Numer. Methods Engrg. 9 (3), 233–241, (1993)

    MATH  Google Scholar 

  25. Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comp. 65(216), 1387–1401 (1996)

    Article  MATH  Google Scholar 

  26. Marini, D., Quarteroni, A.: A relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55(5), 575–598 (1989)

    MATH  Google Scholar 

  27. Pasciak, J.E.: Two domain decomposition techniques for Stokes problems. In: Chan, T., Glowinski, R., Périaux, J., Widlund, O. (eds.), Domam Decomposition Methods, pages 419–430, Philadelphia, 1989. SIAM

  28. Pavarino, L.F.: Neumann–Neumann algorithms for spectral elements in three dimensions. RAIRO M 2 AN 31(4), 471–493 (1997)

    Google Scholar 

  29. Pavarino, L.F., Widlund, O.B.: Iterative substructuring methods for spectral element discretizations of elliptic systems. II: Mixed methods for linear elasticity and Stokes flow. SIAM J. Numer. Anal. 37(2), 375–402 (1999)

    MATH  Google Scholar 

  30. Pavarino, L.F., Widlund, O.B.: Balancing Neumann–Neumann methods for incompressible Stokes equations. Comm. Pure Appl. Math. 55(3), 302–335 (2002)

    Article  Google Scholar 

  31. Quarteroni, A.: Domain decomposition algorithms for the Stokes equations. In: Chan, T., Glowinski, R., Périaux, J., Widlund, O. (eds.), Domain Decomposition Methods, pages 431–442, Philadelphia, 1989. SIAM

  32. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, 1999

  33. Rønquist, E.: A domain decomposition solver for the steady Navier-Stokes equations. In: Ilin, A.V., Scott, L.R. (eds.), Proc. of ICOSAHOM.95, published by the Houston Journal of Mathematics, pages 469–485, 1996

  34. Rønquist, E.: Domain decomposition methods for the steady Stokes equations. In: Lai, C-H., Bjørstad, P., Cross, M., Widlund, O. (eds.), Proc. of DD11, pages 326–336. DDM. org, 1999

  35. Smith, B.F., Bjørstad, P., Gropp, W.D.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996

  36. Stenberg, R., Suri, M.: Mixed hp finite element methods for problems in elasticity and Stokes flow. Numer. Math. 72(3), 367–390 (1996)

    Article  MATH  Google Scholar 

  37. Toselli, A.E.: Neumann–Neumann methods for vector field problems. ETNA 11, 1–24 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olof B. Widlund.

Additional information

Mathematics Subject Classification (1991): 65N55, 65N30, 65N35, 65F10, 65Y05

This work was supported by a scholarship of CNPq, of the Ministry for Science and Technology of Brazil, under process 201205/97-1. The work was developed in part at MCS/ANL-DOE, under a Givens Research Associate appointment in Summer 2001.

This work was supported in part by the National Science Foundation under Grant NSF-CCR-9732208 and in part by MIUR.

This work was supported in part by the National Science Foundation under Grants qNSF-CCR-9732208, and in part by the U.S. Department of Energy under contracts DE-FC02-01ER25482 and DE-FG02-92ER25127.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldfeld, P., Pavarino, L. & Widlund, O. Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity. Numer. Math. 95, 283–324 (2003). https://doi.org/10.1007/s00211-002-0450-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-002-0450-9

Keywords

Navigation