Abstract
We prove that the pull back of the canonical theta divisor for \(E_8\)-bundles at level one induces a strange duality between Verlinde spaces for \(G_2\) and \(F_4\) at level one on smooth curves of genus g. We also prove a parabolic generalization in terms of conformal blocks and write down identities between conformal blocks divisors in \({\text {Pic}}(\overline{{\text {M}}}_{g,n})_{{\mathbb {Q}}}\).
Similar content being viewed by others
References
Adams, J.F.: Lectures on exceptional Lie groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, ISBN 978-0-226-00526-3 (1996)
Abe, T.: Strange duality for parabolic symplectic bundles on a pointed projective line. Int. Math. Res. Not. IMRN 2008, Art. ID rnn121, p. 47
Belkale, P.: The strange duality conjecture for generic curves. J. Amer. Math. Soc. 21, 235–258 (2008)
Belkale, P.: Strange duality and the Hitchin/WZW connection. J. Differ. Geom. 82(2), 445–465 (2009)
Belkale, P.: Orthogonal bundles, theta characteristics and the symplectic strange duality. Contemp. Math., 564, Amer. Math. Soc., Providence, RI (2012)
Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164, 385–419 (1994)
Boysal, A., Pauly, C.: Strange duality for Verlinde spaces of exceptional groups at level one. Int. Math. Res. Not. (2009). doi:10.1093/imrn/rnp151
Cohen, A., Griess, R.: On finite simple subgroups of the complex Lie group of type E8. In: The Arcata conference on representations of finite groups (Arcata, Calif., 1986), Proceedings of symposia in pure mathematics, vol. 47, Part 2, AMS (1987)
Drezet, J.M., Narasimhan, M.S.: Groupe de Picard des varietes de modules de fibres semi- stables sur les courbes algebriques. Invent. Math. 97, 53–94 (1989)
Faltings, G.: Theta functions on moduli space of \(G\) bundles. J. Algebraic Geom. 18, 309–369 (2009)
Fakhruddin, N.: Chern classes of conformal blocks. Contemp. Math., 564, Amer. Math. Soc., Providence, RI, 145-176 (2012)
Kac, V., Sanielevici, M.: Decomposition of representations of exceptional affine algebras with respect to conformal subalgebras. Phys. Rev. D 37(8), 2231–2237 (1988)
Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannians and moduli spaces of G-bundles. Math. Ann. 300, 41–75 (1994)
Kac, V., Wakimoto, M.: Modular and conformal invariant constraints in representation theory of affine algebras. Adv. Math. 70, 156–234 (1988)
Kac, V.: Infinite dimensional Lie algebras, 3rd edn, Cambridge University Press, Cambridge (UK). xxii+400 pp (1990)
Laszlo, Y., Sorger, C.: The line bundles on the moduli of parabolic G-bundles over curves and their sections. Ann. Scient. Ec. Norm. Sup. 30, 499–525 (1997)
Marian, A., Oprea, D.: The level-rank duality for non-abelian theta functions. Invent. Math. 168(2), 22–247 (2007)
Marian, A., Oprea, D.: A tour of theta dualities on moduli spaces of sheaves. Curve and abelian varieties, pp. 175-202, Contemporary Mathematics, 465, American Mathematical Society, Providence, Rhode Island (2008)
Marian, A., Oprea, D., Pandharipande, R.: The first Chern class of the Verlinde bundle. arXiv:1308.4425
Marian, A., Oprea, D., Pandharipande, R., Pixton, A., Zvonkine, D.: The Chern character of the Verlinde bundle over the moduli space of stable curves. arXiv:1311.3028
Mukhopadhyay, S.: Rank-level duality of Conformal Blocks for odd orthogonal Lie algebras in genus 0. Trans. Amer. Math. Soc. (2015). doi:10.1090/tran6691
Mukhopadhyay, S.: Rank-level duality and Conformal Block divisors. Adv. Math. 287, 389–411 (2016)
Nakanishi, N., Tsuchiya, A.: Level-rank duality of WZW models in conformal field theory. Commun. Math. Phys. 144(2), 351–372 (1992)
Pauly, C.: Le dualite etrange, Seminaire Bourbaki. Vol 2007/2008, Asterique No. 326, Exp. No. 994, 363-277 (2009)
Popa, M.: Generalized theta linear series on moduli spaces of vector bundles on curves. Proceedings of the Cologne Summer School. arXiv:0712.3192
Oudompheng, R.: Rank-level duality for conformal blocks of the linear group. J. Algebraic Geom. 20(3), 559–597 (2011)
Sorger, S.: On moduli of \(G\)-bundles on a curve for exceptional \(G\) Ann. Scient. Ec. Norm. Sup. 32, 127–133 (1999)
Schellekens, A., Warner, N.: Conformal subalgebras of Kac-Moody algebras. Phys. Rev. D 34(10), 3092–3096 (1986)
Tsuchimoto, Y.: On the coordinate-free description of the conformal blocks. J. Math. Kyoto Univ. 33, 29–49 (1993)
Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Integrable Systems in Quantum Field Theory and Statistical Mechanics, 459-566, Adv. Stud. Pure Math. 19, Academic Press, Boston, MA (1989)
van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: LiE, A Package for Lie Group Computations. Computer Algebra Nederland, Amsterdam, ISBN 90-74116-02-7 (1992)
Acknowledgments
I thank Jeffrey Adams, Shrawan Kumar and Richard Wentworth for useful conversations during the preparation of this paper. This work was initiated by a question (see Theorem 1.1) conveyed to the author by Christian Pauly. I thank him for his comments and suggestions. I was supported by Simons Travel grant.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mukhopadhyay, S. Strange duality of Verlinde spaces for \(G_2\) and \(F_4\) . Math. Z. 283, 387–399 (2016). https://doi.org/10.1007/s00209-015-1603-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-015-1603-8