[go: up one dir, main page]

Skip to main content

Advertisement

Log in

‘A plant’s major strength in rhizosphere’: the plant growth promoting rhizobacteria

  • Mini Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Human activities, industrialization and civilization have deteriorated the environment which eventually has led to alarming effects on plants and animals by heightened amounts of chemical pollutants and heavy metals in the environment, which create abiotic stress. Environmental conditions like drought, salinity, diminished macro-and micro-nutrients also contribute in abiotic stress, resulting in decrement of survival and growth of plants. Presence of pathogenic and competitive microorganisms, as well as pests lead to biotic stress and a plant alone can not defend itself. Thankfully, nature has rendered plant’s rhizosphere with plant growth promoting rhizobacteria which maintain an allelopathic relationship with host plant to defend the plant and let it flourish in abiotic as well as biotic stress situations. This review discusses the mechanisms behind increase in plant growth via various direct and indirect traits expressed by associated microorganisms in the rhizosphere, along with their current scenario and promising future for sustainable agriculture. It also gives details of ten such bacterial species, viz. Acetobacter, Agrobacterium, Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobacter and Frankia, whose association with the host plants is famed for enhancing plant’s growth and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Abdallah RAB, Mejdoub-Trabelsi B, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016) Isolation of endophytic bacteria from Withania somnifera and assessment of their ability to suppress Fusarium wilt disease in tomato and to promote plant growth. J Plant Pathol Microbiol 7(5):1000352

    Google Scholar 

  • Ahmad M, Adil Z, Hussain A, Mumtaz MZ, Nafees M, Ahmad I, Jamil M (2019) Potential of phosphate solubilizing Bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pak J Agric Sci 56(2):89

    Google Scholar 

  • Alavo TBC, Boukari S, Fayalo DG, Bochow H (2015) Cotton fertilization using PGPR Bacillus amyloliquefaciens FZB42 and compost: Impact on insect density and cotton yield in North Benin. West Africa Cogent Food Agric 1:1063829

    Article  Google Scholar 

  • Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Medigue C, Yamaura M, Kakoi K, Kucho K (2010) The Frankia alni symbiotic transcriptome. MPMI 23(5):593–607

    Article  CAS  PubMed  Google Scholar 

  • Almethyeb M, Ruppel S, Paulsen H-M, Vassilev N, Eichler-Lobermann B (2013) Single and combined applications of arbuscular mycorrhizal fungi and Enterobacter radicincitans affect nutrient uptake of faba bean and soil biological characteristics. Appl Agric Forestry Res 3(63):229–234

    Google Scholar 

  • Andrés-Barrao C, Lafi FF, Alam I, de Zélicourt A, Eida AA, Bokhari A, Alzubaidy H, Bajic VB, Hirt H, Saad MM (2017) Complete genome sequence analysis of Enterobacter sp SA187, a plant multi-stress tolerance promoting endophytic bacterium. Front Microbiol 8:2023. https://doi.org/10.3389/fmicb.2017.02023

    Article  PubMed  PubMed Central  Google Scholar 

  • Ardanuy A, Walker JKM, Kritzler U, Taylor AFS, Johnson D (2020) Tripartite symbioses regulate plant–soil feedback in alder. Funct Ecol 35:1353–1365. https://doi.org/10.1111/1365-2435.13799

    Article  CAS  Google Scholar 

  • Arthee R, Marimuthu P (2017) Studies on endophytic Burkholderia sp from sugarcane and its screening for plant growth promoting potential. J Exp Biol Agric Sci. 5(2):242–257

    Article  CAS  Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J 34(5):454–466

    CAS  Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp and Bacillus sp isolated from tomato rhizosphere. AJCS. 4(6):378–383

    CAS  Google Scholar 

  • Bartolini S, Carrozza GP, Scalabrelli G, Toffanin A (2017) Effectiveness of Azospirillum brasilense Sp245 on young plants of Vitis vinifera L. Open Life Sci 12:365–372

    Article  CAS  Google Scholar 

  • Basharat Z, Yasmin A, He T, Tong Y (2018) Genome sequencing and analysis of Alcaligenes faecalis subsp phenolicus MB207. Sci Rep 8(1):1–10

    Article  CAS  Google Scholar 

  • Berger B, Patz S, Ruppel S, Dietel K, Faetke S, Junge H, Becker M (2018) Successful formulation and application of plant growth-promoting Kosakonia radicincitans in maize cultivation. BioMed ResInt 2018(89):6439481

    Google Scholar 

  • Bhadrecha P, Bala M, Kaushik V, Gaur NA, Singh S, Singh J, Kumar M (2021) Folate-producing rhizobacteria of Hippophae rhamnoides L from Indian trans-Himalaya low atmospheric zone. Biocell 45(2):387–394. https://doi.org/10.32604/biocell.2020.013824

    Article  CAS  Google Scholar 

  • Bhadrecha P, Bala M, Khasa YP, Arshi A, Singh J, Kumar M (2020) Hippophae rhamnoides L rhizobacteria exhibit diversified cellulase and pectinase activities. Physiol Mol Biol Plants 26(5):1075–1085. https://doi.org/10.1007/s12298-020-00778-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhadrecha P, Bala M, Kumar M, Panwar JS, Sharma NR (2018) Seabuckthorn rhizobacteria produce ACC deaminase and exhibit PGPR traits. Ecol Environ Conserv 24(1):240–245

    Google Scholar 

  • Binyamin R, Nadeem SM, Akhtar S, Khan MY, Anjum R (2019) Beneficial and pathogenic plant-microbe interactions: A review. Soil Environ 38(2):11–33

    Article  Google Scholar 

  • Boujenna A, GarciadelMoral LF (2021) Biotechnological pproaches ro develop nitrogen-fixin cereals: A review. Spanish J Agric Res. 19(4):e0801. https://doi.org/10.5424/sjar/2021194-18346

    Article  Google Scholar 

  • Brito LF, López MG, Straube L, Passaglia LMP, Wendisch VF (2020) Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi: Gene Expression and Physiological Functions. Front Microbiol 11:588605. https://doi.org/10.3389/fmicb.2020.588605

    Article  PubMed  PubMed Central  Google Scholar 

  • Buensanteai N, Sompong M, Thamnu K, Athinuwat D, Brauman A, Plassard C (2013) The plant growth promoting bacterium Bacillus sp CaSUT007 produces phytohormone and extracellular proteins for enhanced growth of cassava. Afr J Microbiol Res 7(42):4949–4954

    Article  Google Scholar 

  • Carro L, Nouioui I (2017) Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 3(3):383–412. https://doi.org/10.3934/microbiol.2017.3.383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecagno R, Fritsch TE, Schrank IS (2015) The plant growth-promoting bacteria Azospirillum amazonense: genomic versatility and phytohormone pathway. Biomed Res Int 2015:898592

    Article  PubMed  PubMed Central  Google Scholar 

  • Chawla N, Anand RC, Narula N (2013) Colonization behavior of Gluconoacetobacter diazotrophicus in root-knot nematode (Meloidogyne incognita) infected and healthy cotton plants. Int J Microb Resour Technol 2(1):25–35

    Google Scholar 

  • Chen H, Renault S, Markham J (2022) The effect of Frankia and Hebeloma crustiliniforme on Alnus alnobetula subsp. Crispa Grow Saline Soil Plants 11:1860. https://doi.org/10.3390/plants11141860

    Article  CAS  Google Scholar 

  • Costa RRGF, Quirino GSF, Naves DCF, Santos CB, Rocha AFS (2015) Efficiency of inoculant with Azospirillum brasilense on the growth and yield of second-harvest maize. Pesq Agropec Trop, Goiânia. 45(3):304–311

    Article  Google Scholar 

  • Dashadi M, Khosravi H, Moezzi A, Nadian H, Heidari M, Radjabi R (2011) Co-inoculation of Rhizobium and Azotobacter on growth indices of faba bean under water stress in the green house condition. Advan Stud Biol 3(8):373–385

    Google Scholar 

  • de-Bashan, L.E., Hernandez, J.P., Bashan, Y., Maier, R.M. (2010) Bacillus pumilus ES4: Candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environ Exp Bot 69:343–352

    Article  Google Scholar 

  • DeAngelis KM, Sharma D, Varney R, Simmons BA, Isern NG, Markillie LM, Robinson EW (2013) Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol 4:280

    Article  PubMed  PubMed Central  Google Scholar 

  • Delshadi S, Ebrahimi M, Shirmohammadi E (2017) Influence of plant-growth-promoting bacteria on germination, growth and nutrients’ uptake of Onobrychis sativa L. under drought stress. J Plant Interactions. 12(1):200–208. https://doi.org/10.1080/17429145.2017.1316527

    Article  CAS  Google Scholar 

  • Dessaux Y, Faure D (2018) Quorum Sensing and Quorum Quenching in Agrobacterium: A “Go/No Go System”? Genes 9:210. https://doi.org/10.3390/genes9040210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey R, Sarkar K, Dutta S, Murmu S, Mandal N (2017) Role of Azotobacter sp isolates as a plant growth promoting agent and their antagonistic potentiality against soil borne pathogen (Rhizoctonia solani) under in vitro condition. Int J Curr Microbiol App Sci 6(11):2830–2836

    Article  Google Scholar 

  • Diagne N, Djighaly PI, Ngom M, Pesce C, Champion A, Svistoonoff S, Hocher V, Tisa LS (2020a) Advances in Frankia genome studies and molecular aspects of tolerance to environmental stresses. In: Richa S, Laith KT (eds) Vivek S. Aspects of Plant Beneficial Microbes in Agriculture, Academic Press, pp 381–389

    Google Scholar 

  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020b) Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12(10):370

    Article  CAS  Google Scholar 

  • Duca DR, Rose DR, Glick BR (2018) Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp UW4. Antonie Van Leeuwenhoek 111(9):1645–1660

    Article  CAS  PubMed  Google Scholar 

  • Dwibedi V, Rath SK (2022) New Insights into and Updates on Antimicrobial Agents. In: Akhtar N, Singh KS, Prerna G, D. (eds) Emerging Modalities in Mitigation of Antimicrobial Resistance. Springer, Cham

    Google Scholar 

  • Dwibedi V, Rath SK, Joshi M et al (2022) Microbial endophytes: application towards sustainable agriculture and food security. Appl Microbiol Biotechnol 106:5359–5384. https://doi.org/10.1007/s00253-022-12078-8

    Article  CAS  PubMed  Google Scholar 

  • Felestrino EB, Assis RAB, Lemes CGC, Cordeiro IF, Fonseca NP, Villa MM, Vieira IT, Kamino LHY, Carmo FF, Moreira LM (2017) Alcaligenes faecalis associated with Mimosa calodendron rizhosphere assist plant survival in arsenic rich soils. J Soil Sci Plant Nutr 17(4):1102–1115

    Article  CAS  Google Scholar 

  • Fernandez-Gonzalez AJ, Martinez-Hidalgo P, Cobo-Diaz JF, Villadas PJ, Martinez-Molina E, Toro N, Tringe SG, Fernandez-Lopez M (2017) The rhizosphere microbiome of burned holm-oak: potential role of the genus Arthrobacter in the recovery of burned soils. Nature-Scientific Reports 7:6008

    Article  Google Scholar 

  • Ferreira MJ, Silva H, Cunha A (2019) Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere 29(4):409–420. https://doi.org/10.1016/s1002-0160(19)60810-6

    Article  CAS  Google Scholar 

  • Fontana CA, Salazar SM, Bassi D, Puglisi E, Lovaisa N, Toffoli LM, Pedraza R, Cocconcelli PS (2018) Genome sequence of Azospirillum brasilense REC3, isolated from strawberry plants. Genome Announc 6:e00089. https://doi.org/10.1128/genomeA.00089-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Expr 6:3

    Article  Google Scholar 

  • Ghazy N, El-Nahrawy S (2021) Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Arch Microbiol 203:1195–1209. https://doi.org/10.1007/s00203-020-02113-5

    Article  CAS  PubMed  Google Scholar 

  • Ghedira K, Harigua-Souiai E, Hamda CB, Fournier P, Pujic P, Guesmi S, Guizani I, Miotello G, Armengaud J, Normand P, Sghaier H (2018) The PEG-responding desiccome of the alder microsymbiont Frankia alni. Sci Rep 8:759. https://doi.org/10.1038/s41598-017-18839-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Mula A, Lachat J, Mathias L, Naquin D, Lamouche F, Mergaert P, Faure D (2019) The biotroph Agrobacterium tumefaciens thrives in tumors by exploiting a wide spectrum of planthost metabolites. New Phytologist 222(1):455–467

    Article  CAS  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) PGPR: Current and future prespects for development of sustainable agriculture. J Microb Biochem Technol 7(2):96–102

    CAS  Google Scholar 

  • Gupta H, Saini RV, Pagadala V, Kumar N, Sharma DK, Saini AK (2016) Analysis of plant growth promoting potential of endophytes isolated from Echinacea purpurea and Lonicera japonica. J Soil Sci Plant Nutr 16(3):558–577

    CAS  Google Scholar 

  • Gupta R, Kumari A, Sharma S, Alzahrani OM, Noureldeen A, Darwish H (2022) Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi J Biol Sci 29:35–42. https://doi.org/10.1016/j.sjbs.2021.09.075

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Xie P, Johnstone L, Miller SJ, Rensing C, Wei G (2012) Genome sequence and mutational analysis of plant-growth- promoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing. Appl Environ Microbiol 78(15):5384–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Zhu M, Huang J, Hsiang T, Zheng L (2019) Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae. Can J Plant Path 41(1):47–59

    Article  CAS  Google Scholar 

  • Huang Y, Wu Z, He Y, Ye BC, Li C (2017) Rhizospheric Bacillus subtilis exhibits biocontrol effect against Rhizoctonia solani in pepper (Capsicum annuum). BioMed Res Int 2017:9397619

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang HH, Liu YT, Huang SC, Tung CY, Huang FC, Tsai YL, Cheng TF, Lai EM (2015) Overexpression of the HspL promotes Agrobacterium tumefaciens virulence in Arabidopsis under heat shock conditions. Phytopathology 105(2):160–168

    Article  CAS  PubMed  Google Scholar 

  • Hwang, H.H., Yu, M., Lai, E.M. 2017. Agrobacterium-Mediated Plant Transformation: Biology and Applications. The Arabidopsis Book © 2017 American Society of Plant Biologists. 2017: e0186. doi: https://doi.org/10.1199/tab.0186.

  • Ibort P, Molina S, Nunez R, Zamarreno AM, Garcia-Mina JM, Ruiz-Lozano JM, Orozco-Mosqueda MC, Glick BR, Aroca R (2017) Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria. Ann Bot 120:101–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ipek M, Pirlak L, Esitken A, Donmez MF, Turan M, Sahin F (2014) Plant growth-promoting rhizobacteria (PGPR) Increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. J Plant Nutr 37(7):990–1001

    Article  CAS  Google Scholar 

  • Jetiyanon K (2015) Multiple mechanisms of Enterobacter asburiae strain RS83 for plant growth enhancement. J Sci Technol 37(1):29–36

    Google Scholar 

  • Jiang Y, Song Y, Jiang C, Li X, Liu T, Wang J, Chen C, Gao J (2022) Identification and characterization of Arthrobacter nicotinovorans JI39, a novel pant growth promoting rhizobacteria strain from Panax ginseng. Front Plant Sci 13:873621. https://doi.org/10.3389/fpls.2022.873621

    Article  PubMed  PubMed Central  Google Scholar 

  • Ju S, Lin J, Zheng J, Wang S, Zhou H, Sun M (2016) Alcaligenes faecalis ZD02, a novel nematicidal bacterium with an extracellular serine protease virulence factor. Appl Environ Microbiol 82(7):2112–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung BK, Hong SJ, Park GS, Kim MC, Shin JH (2018) Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Appl Biol Chem 61(2):173–180

    Article  CAS  Google Scholar 

  • Kang SM, Khan AL, Waqas M, Asaf S, Lee KE, Park YG, Lee IJ (2019) Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J Plant Interactions 14(1):416–423

    Article  CAS  Google Scholar 

  • Karthikeyan A, Chandrasekaran K, Geetha M, Kalaiselvi R (2013) Growth response of Casuarina equisetifolia Forst rooted stem cuttings to Frankia in nursery and field conditions. J Biosci 38(4):741–747

    Article  CAS  PubMed  Google Scholar 

  • Kashyap BK, Solanki MK, Pandey AK, Prabha S, Kumar P, Kumari B (2019) Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 219–236

    Chapter  Google Scholar 

  • Kataoka R, Guneri E, Turgay OC, Yaprak AE, Sevilir B, Baskose I (2017) Sodium-resistant plant growth-promoting rhizobacteria isolated from a halophyte, Salsola grandis, in saline-alkaline soils of Turkey. Eurasian J Soil Sci 6(3):216–225

    CAS  Google Scholar 

  • Khalifa AYZ, Alsyeeh A-M, Almalki MA, Saleh FA (2016) Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi Journal of Biological Sciences 23:79–86

    Article  CAS  PubMed  Google Scholar 

  • Khanghahi MY, Pirdashti H, Rahimian H, Nematzadeh GH, Sepanlou MG, Salvatori E, Crecchio C (2019) Leaf photosynthetic characteristics and photosystem II photochemistry of rice (Oryza sativa L.) under potassium-solubilizing bacteria inoculation. Photosynthetica 57(2):500–511

    Article  CAS  Google Scholar 

  • Kiran M, Afrasayab S, Abbas Z, Faisal M, Hasnain S (2012) Plant growth promoting capability of Azotobacter as mono and mix culture on Vigna radiata. Afr J Microbiol Res 6(6):1291–1296

    Article  Google Scholar 

  • Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155(3):780–790

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Singh S, Bhadrecha P, Kaur P, Bhatia D, Singla S, Datta S, Chandel V, Bhat MA, Kashyap N, Kalia A, Singh J (2015) Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial waste water. Orient J Chem 31(1):357–361

    Article  Google Scholar 

  • Lee JT, Tsai SM (2017) The nitrogen-fixing Frankia significantly increases growth, uprooting resistance and root tensile strength of Alnus formosana. Afr J Biotech 17(7):213–225

    Google Scholar 

  • Li F, Song W, Wei J, Liu C, Yu C (2016) Comparative proteomic analysis of phenol degradation process by Arthrobacter. Int Biodeterior Biodegradation 110:189–198

    Article  CAS  Google Scholar 

  • Li M, Guo R, Yu F, Chen X, Zhao H, Li H, Wu J (2018) Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. Int J Mol Sci 19:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima EF, Neto VPDC, Araujo JMD, Neto FDA, Bonifacio A, Rodrigues ACR (2016) Varieties of lima bean shows different growth responses when inoculated with Bacillus sp, a plant growth promoting bacteria. Biosci J Uberlandia. 32(5):1221–1233

    Article  Google Scholar 

  • Lin L, Li Z, Hu C, Zhang X, Chang S, Yang L, Li Y, An Q (2012) Plant growth-promoting nitrogen-fixing Enterobacteria are in association with sugarcane plants growing in Guangxi. China Microbes Environ 22(4):391–398

    Article  Google Scholar 

  • Liu N, Chen GQ, Ning GA, Shi HB, Zhang CL, Lu JP, Mao LJ, Feng XX, Liu XH, Su ZZ, Lin FC (2016) Agrobacterium tumefaciens-mediated transformation: An efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae. Microbiol Res 182:40–48

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Jiang X, He X, Zhao W, Cao Y, Guo T, Tang X (2019) Phosphate-solubilizing Pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. J Plant Growth Regul 38(4):1314–1324

    Article  CAS  Google Scholar 

  • Liu Y, Zhang Z, Fang K, Shan Q, He L, Dai X, Zou X, Liu F (2022) Genome-Wide Analysis of the MYB-Related Transcription Factor Family in Pepper and Functional Studies of CaMYB37 Involvement in Capsaicin Biosynthesis. Int J Mol Sci 23:11667. https://doi.org/10.3390/ijms231911667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM (2010a) Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 60:2490–2495

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee J-S, Saravanan VS, Lee K-C, Santhanakrishnan P (2010b) Enterobacter arachidis sp. nov., a plant-growth- promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. Int J Syst Evol Microbiol 60:1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Mallet PL, Roy S (2014) The symbiosis between Frankia and alder shrubs results in a tolerance of the environmental stress associated with tailings from the Canadian oil sands industry. J Pet Environ Biotechnol 5(3):180. https://doi.org/10.4172/2157-7463.1000180

    Article  Google Scholar 

  • Mangmang JS, Deaker R, Rogers G (2015) Azospirillum brasilense enhances recycling of fish effluent to support growth of tomato seedlings. Horticulturae 1:14–26

    Article  Google Scholar 

  • Manzanera M, Narvaez-Reinaldo JJ, Garcia-Fontana C, Vílchez JI, Gonzalez-Lopez J (2015) Genome sequence of Arthrobacter koreensis 5J12A, a plant growth-promoting and desiccation-tolerant strain. Genome Announc 3(3):e00648-e715

    Article  PubMed  PubMed Central  Google Scholar 

  • Masson-Boivin C, Sachs JL (2018) Symbiotic nitrogen fixation by rhizobia—the roots of a success story. Curr Opin Plant Biol 44:7–15

    Article  CAS  PubMed  Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Meena A, Swapnil P, Divyanshu K, Kumar S, Harish T (2020) PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol 1:34. https://doi.org/10.1002/jobm.202000370

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Meena SK, Mishra PK, Bisht JK, Pattanayak A (2018) Potassium solubilization: strategies to mitigate potassium deficiency in agricultural soils. GJBAHS 7:1–3

    Article  Google Scholar 

  • Mendez-Bravo A, Cortazar-Murillo EM, Guevara-Avendano E, Ceballos-Luna O, Rodriguez-Haas B, Kiel-Martinez AL (2018) Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS ONE 13(3):e0194665. https://doi.org/10.1371/journal.pone.0194665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao G, Jian-jiao Z, En-tao W, Qian C, Jing X, Jian-guang S (2014) Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp 7016 and its effect on tomato growth in the field. J Integrat Agric. https://doi.org/10.1016/S2095-3119(14)60932-1

    Article  Google Scholar 

  • Milosevic N, Tintor B, Protic R, Cvijanovic G, Dimitrijevic T (2012) Effect of inoculation with Azotobacter chroococcum on wheat yield and seed quality. Romanian Biotechnol Lett 17(3):7352–7357

    Google Scholar 

  • Mobeen N, Latif Z (2016) Characterization of mercury resistant and growth promoting Enterobacter sp from rhizosphere to use as a biofertilizer. Adv Life Sci. 3(2):36–41

    CAS  Google Scholar 

  • Mukherjee B, Anuroopa N, Maheswari NU (2017) Biochemical and molecular characterization of different Bacillus sp from the rhizosphere soil of Withania somnifera. Int J Pharm Sci Rev Res. 43(2):178–184

    CAS  Google Scholar 

  • Nailwal S, Anwar MS, Budhani KK, Verma A, Nailwal TK (2014) Burkholderia sp. from rhizosphere of Rhododendron arboretum: Isolation, identification and plant growth promotory (PGP) activities. J Appl Nat Sci 6(2):473–479

    Article  CAS  Google Scholar 

  • Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium-and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181

    Article  CAS  Google Scholar 

  • Neshat M, Abbasi A, Hosseinzadeh A et al (2022) Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiol Mol Biol Plants 28:347–361. https://doi.org/10.1007/s12298-022-01128-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngom M, Gray K, Diagne N, Oshone R, Fardoux J, Gherbi H, Hocher V, Svistoonoff S, Laplaze L, Tisa LS, Sy MO, Champion A (2016) Symbiotic performance of diverse Frankia strains on salt-stressed Casuarina glauca and Casuarina equisetifolia plants. Front Plant Sci 7:1331. https://doi.org/10.3389/fpls.2016.01331

    Article  PubMed  PubMed Central  Google Scholar 

  • Normand P, Pujic P, Abrouk D, Vemulapally S, Guerra T, Carlos-Shanley C, Hahn D (2022) Draft genomes of symbiotic Frankia strains AgB32 and AgKG’84/4 from root nodules of Alnus glutinosa growing under contrasted environmental conditions. J Genomics 10:61–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Nouioui I, Cortés-albayay C, Carro L, Castro JF, Gtari M, Ghodhbane-Gtari F, Klenk H-P, Tisa LS, Sangal V, Goodfellow M (2019) Genomic insights into plant-growth-promoting potentialities of the genus Frankia. Front Microbiol 10:1457. https://doi.org/10.3389/fmicb.2019.01457

    Article  PubMed  PubMed Central  Google Scholar 

  • Oedjijono ES, Moeljopawiro S, Djatmiko HA (2014) Promising plant growth promoting rhizobacteria of Azospirillum spp isolated from iron sand soils, Purworejo coast, central Java. Indonesia. Adv. Appl. Sci. Res. 5(3):302–308

    Google Scholar 

  • Ogbo F, Okonkwo J (2012) Some characteristics of a plant growth promoting Enterobacter sp. isolated from the roots of maize. Adv Microbiol 2:368–374

    Article  Google Scholar 

  • Orozco-Mosqueda MC, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol Res 2020:126439. https://doi.org/10.1016/j.micres.2020.126439

    Article  CAS  Google Scholar 

  • Palla KJ, Pijut PM (2015) Agrobacterium-mediated genetic transformation of Fraxinus americana hypocotyls. Plant Cell Tiss Organ Cult 120:631–641

    Article  CAS  Google Scholar 

  • Pandey C, Bajpai VK, Negi YK, Rather IA, Maheshwari DK (2018) Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi J Biol Sci 25:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul S, Rathi MS, Tyagi SP (2011) Interactive effect with AM fungi and Azotobacter inoculated seed on germination, plant growth and yield in cotton (Gossypium hirsutum). Indian J Agric Sci 81(11):1041–1045

    Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK, Donose BC, Webb RI, Parsons J, Liao W, Sagulenko E, Lakshmanan P, Hugenholtz P, Schmidt S, Ragan MA (2016) Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Sci Rep 6:37389. https://doi.org/10.1038/srep37389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peano C, Chiaramonte F, Motta S, Pietrelli A, Jaillon S (2014) Gene and protein expression in response to different growth temperatures and oxygen availability in Burkholderia thailandensis. PLoS ONE 9(3):e93009. https://doi.org/10.1371/journal.pone.0093009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picazevicz AAC, Kusdra JF, Moreno AL (2017) Maize growth in response to Azospirillum brasilense, Rhizobium tropici, molybdenum and nitrogen. R Bras Eng Agríc Ambiental 21(9):623–627

    Article  Google Scholar 

  • Polyak YM, Sukcharevich VI (2019) Allelopathic interactions between plants and microorganisms in soil ecosystems. Biol Bull Rev 9(6):562–574

    Article  Google Scholar 

  • Prapagdee B, Khonsue N (2015) Bacterial-assisted cadmium phytoremediation by Ocimum gratissimum L. in polluted agricultural soil: a field trial experiment. Int J Environ Sci Technol 12:3843–3852

    Article  CAS  Google Scholar 

  • Prathibha KS, Siddalingeshwara KG (2013) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescence as rhizobacteria on seed quality of sorghum. Int J Curr Microbiol App Sci 2(3):11–18

    Google Scholar 

  • Presta L, Fondi M, Perrin E, Maida I, Miceli E, Chiellini C, Maggini V, Bogani P, Di Pilato V, Rossolini GM, Mengoni A, Fani R (2016) Arthrobacter sp. EpRS66 and Arthrobacter sp EpRS71: draft genome sequences from two bacteria isolated from Echinacea purpurea rhizospheric soil. Front Microbiol 7:1417. https://doi.org/10.3389/fmicb.2016.01417

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi J, Aiuchi D, Tani M, Asano S, Koike M (2016) Potential of entomopathogenic Bacillus thuringiensis as plant growth promoting rhizobacteria and biological control agents for tomato Fusarium wilt. Int J Environ Agric Res 2(6):55–63

    Google Scholar 

  • Qiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y (2017) Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol 17:131. https://doi.org/10.1186/s12866-017-1039-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiroz-Castaneda RE, Mendoza-Mejia A, Obregon-Barboza V, Martinez-Ocampo F, Hernandez-Mendoza A, Martinez-Garduno F, Guillen-Solis G, Sanchez-Rodriguez F, Pena-Chora G, Ortiz-Hernandez L, Gaytan-Colin P, Dantan-Gonzalez E (2015) Identification of a New Alcaligenes faecalis strain MOR02 and assessment of its toxicity and pathogenicity to insects. BioMed Res Int 2015:570243

    Article  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan R, Hashem A, AbduAllah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667. https://doi.org/10.3389/fphys.2017.00667

    Article  PubMed  PubMed Central  Google Scholar 

  • Rani MU, Arundhathi R (2020) Bacillus cereus and Enterobacter cancerogenus screened for their efficient plant growth promoting traits rhizobacteria (PGPR) and antagonistic traits among sixteen bacterial isolates from rhizospheric soils of Pigeon Pea. Afr J Microbiol Res 5(15):2090–2094

    Google Scholar 

  • Rao HC, Savalgi VP (2017) Isolation and screening of nitrogen fixing endophytic bacterium Gluconacetobacter diazotrophicus GdS25. Int J Curr Microbiol App Sci 6(3):1364–1373

    Article  CAS  Google Scholar 

  • Reddy PP (2014) Potential Role of PGPR in Agriculture. In: Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1973-6_2.

  • Romano I, Ventorino V, Pepe O (2020) Effectiveness of plant beneficial microbes: Overview of methodological approaches for the assessment of root colonization and persistence. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00006

    Article  PubMed  PubMed Central  Google Scholar 

  • Rueda D, Valencia G, Soria N, Rueda BR, Manjunatha B, Kundapur RR, Selvanayagam M (2016) Effect of Azospirillum spp and Azotobacter spp on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. J Appl Pharma Sci. 6(01):048–054

    Article  CAS  Google Scholar 

  • Sahadevan N, Vishnupriya S, Mathew J (2016) Isolation and functional characterization of endophytic bacterial isolates from Curcuma longa. Int J Pharm Bio Sci 7(1):455–464

    Google Scholar 

  • Sahu PK, Gupta A, Sharma L, Bakade R (2017) Mechanisms of Azospirillum in plant growth promotion. Sch J Agric Vet Sci 4(9):338–343

    Google Scholar 

  • Samaniego-Gamez BY, Garruna R, Tun-Suarez JM, Kantun-Can J, Reyes-Ramirez A, Cervantes-Diaz L (2016) Bacillus spp inoculation improves photosystem II efficiency and enhances photosynthesis in pepper plants. Chilean J Agric Res 76(4):409–416

    Article  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Maiti TK (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169(1):20–32

    Article  CAS  PubMed  Google Scholar 

  • Sayed E, Hameda EA, Althubiani A (2015) Enhancement of plant growth by soil inoculation with Azospirillum brasilense HM1 isolated from soil of Saudi Arabia. Int J Curr Microbiol App Sci 4(10):238–248

    CAS  Google Scholar 

  • Scavo A, Abbate C, Mauromicale G (2019) Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant Soil 442:23–48. https://doi.org/10.1007/s11104-019-04190-y

    Article  CAS  Google Scholar 

  • See-Too WS, Ee R, Lim YL, Convey P, Pearce DA, Mohidin TBM, Yin WF, Chan KG (2017) Complete genome of Arthrobacter alpinus strain R38, bioremediation potential unraveled with genomic analysis. Standards Genomic Sci 12:52

    Article  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ (2017) Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. Peer J. 5:e3107. https://doi.org/10.7717/peerj.3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Chen C, Navathe S, Chand R, Pandey SP (2019) A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection. Sci Rep 9(1):1–17

    Google Scholar 

  • Shoda M, Ishikawa Y (2015) Heterotrophic nitrification and aerobic denitrification of a wastewater from a chemical company by Alcaligenes faecalis No. 4. Int J Water Wastewater Treat. 1(2):7895

    Google Scholar 

  • Shrivastava R, Shrivastava AK, Dewangan N (2015) Combined application of Azotobacter and urea to improve growth of rice (Oryza sativum). IOSR J Environ Sci Toxicol Food Technol 1(3):67–72

    Google Scholar 

  • Siddiqui A, Shivle R, Magodiya N, Tiwari K (2014) Mixed effect of Rhizobium and Azotobacter as biofertilizer on nodulation and production of chick pea, Cicer arietinum. Microbiol Commun Biosci Biotech Res Comm 7(1):46–49

    Google Scholar 

  • Singh NK, Chaudhary FK, Patel DB (2013) Effectiveness of Azotobacter bio-inoculant for wheat grown under dryland condition. J Environ Biol 34(5):927

    CAS  PubMed  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First high-quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh SB, Gowtham HG, Murali M, Hariprasad P, Lakshmeesha TR, Murthy KN, Amruthesh KN, Niranjana SR (2019) Plant growth promoting ability of ACC deaminase producing rhizobacteria native to Sunflower (Helianthus annuus L). Biocatal Agric Biotechnol 18:101089. https://doi.org/10.1016/j.bcab.2019.101089

    Article  Google Scholar 

  • Sivasankari B, Anandharaj M (2014) Isolation and molecular characterization of potential plant growth promoting Bacillus cereus GGBSTD1 and Pseudomonas spp. GGBSTD3 from vermisources. Advan Agric. 2014:248591

    Google Scholar 

  • Soldatkina MA, Klochko VV, Zagorodnya SD, Rademan S, Visagie MH, Lebelo MT, Reva ON (2018) Promising anticancer activity of batumin: a natural polyene antibiotic produced by Pseudomonas batumici. Future Med Chem 10(18):2187–2199

    Article  CAS  PubMed  Google Scholar 

  • Stamenov D, Jarak M, Duric S, Hajnal-Jafari T, Andelkovic S (2012) The effect of Azotobacter and actinomycetes on the growth of English ryegrass and microbiological activity in its rhizosphere. Res J Agric Sci 44(2):93–99

    Google Scholar 

  • Sujatha N, Ammani K (2014) Phosphate solubilization by the isolates of fluorescent pseudomonads. Int J Adv Pharm Biol Chem 3:8

    Google Scholar 

  • Sultana S, Alam S, Karim MM (2021) Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. J Agric Food Res. 4:100150. https://doi.org/10.1016/j.jafr.2021.100150

    Article  CAS  Google Scholar 

  • Swarnalakshmi K, Yadav V, Tyagi D, Dhar DW, Kannepalli A, Kumar S (2020) Significance of plant growth promoting rhizobacteria in grain legumes: growth promotion and crop production. Plants 9:1596. https://doi.org/10.3390/plants9111596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng Z, Shao W, Zhang K, Huo Y, Li M (2019) Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. J Environ Manage 231:189–197

    Article  CAS  PubMed  Google Scholar 

  • Thomas L, Gupta A, Gopal M, George P, George V (2010) Plant growth promoting potential of Bacillus spp. isolated from rhizosphere of cocoa (Theobroma cacao L). J Plantation Crops. 38(2):97–104

    Google Scholar 

  • Tiwari S, Chauhan RK, Singh R, Shukla R, Gaur R (2017) Integrated effect of Rhizobium and Azotobacter cultures on the leguminous crop black gram (Vigna mungo). Adv Crop Sci Tech 5:289. https://doi.org/10.4172/2329-8863.1000289

    Article  CAS  Google Scholar 

  • Toklikishvili N, Dandurishvili N, Vainstein A, Tediashvili M, Giorgobiani N, Lurie S, Szegedi E, Glick BR, Chernin L (2010) Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathol 59:1023–1030

    Article  Google Scholar 

  • Touceda-Gonzalez M, Brader G, Antonielli L, Ravindran VB, Waldner G, Friesl-Hanl W, Corretto E, Campisano A, Pancher M, Sessitsch A (2015) Combined amendment of immobilizers and the plant growth-promoting strain Burkholderia phytofirmans PsJN favours plant growth and reduces heavy metal uptake. Soil Biol Biochem 91:140–150

    Article  CAS  Google Scholar 

  • Ullah S, Bano A (2015) Isolation of plant growth promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L) under induced soil salinity. Can J Microbiol 61(4):307–313

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Shahi SK (2015) Isolation and characterization of bacterial isolates from potato rhizosphere as potent plant growth promoters. Int J Curr Microbiol App Sci 4(3):521–528

    CAS  Google Scholar 

  • Vikhe PS (2014) Azotobacter species as a natural plant hormone synthesizer. Res J Recent Sci 3:59–63

    Google Scholar 

  • Walker V, Bruto M, Bellvert F, Bally R, Muller D, Prigent-Combaret C, Moënne-Loccoz Y, Comte G (2013) Unexpected phyto-stimulatory behavior for Escherichia coli and Agrobacterium tumefaciens model strains. MPMI. 26(5):495–502

    Article  CAS  PubMed  Google Scholar 

  • Widawati S (2017) The effect of Azotobacter inoculation on shallot plants (Allium cepa) and availability of phosphate in the saline soil. Biodiversitas 18(1):86–94

    Google Scholar 

  • Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ, Gao XW (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. MPMI 27(7):655–663

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Mansour SR (2013) Nodulation of Alnus japonica and Casuarina equisetifolia in liquid culture after inoculation with Frankia. Bull FFPRI 12–2(427):97–103

    Google Scholar 

  • Yavar A, Sarmani S, Hamzah A, Khoo KS (2014) Phytoremediation of mercury contaminated soil using Scripus mucronatus exposed by bacteria. International Conference on Agricultural, Ecological and Medical Sciences (AEMS-2014). 6–7, 2014 Bali (Indonesia).

  • Yildirim E, Ekinci M, Dursun A, Karagoz K (2015) Plant growth-promoting rhizobacteria improved seedling growth and quality of cucumber (Cucumis sativus L.). International Conference on Chemical, Food and Environment Engineering (ICCFEE'15) Jan. 11–12, 2015 Dubai (UAE).

  • Yoneyama T, Terakado-Tonooka J, Minamisawa K (2017) Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: a review and synthesis. Soil Sci Plant Nutr 63(6):578–590

    Article  CAS  Google Scholar 

  • Yousefi S, Kartoolinejad D, Bahmani M, Naghdi R (2017) Salinity tolerance of Dodonaea viscosa L. inoculated with plant growth-promoting rhizobacteria: assessed based on seed germination and seedling growth characteristics. Folia Oecologica. 44(1):20–27

    Article  Google Scholar 

  • Yu XY, Zhang L, Ren B, Yang N, Liu M, Liu XT, Zhang LX, Ding LX (2015) Arthrobacter liuii sp. nov., resuscitated from Xinjiang desert soil. Int J Syst Evol Microbiol 65:896–901

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D (2022) Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 11:386. https://doi.org/10.3390/plants11030386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Yu L, Ling N, Raza W, Shen Q, Huang Q (2015) Plant-growth-promoting traits and antifungal potential of the Bacillus amyloliquefaciens YL-25. Biocontrol Sci Tech 25(3):276–290. https://doi.org/10.1080/09583157.2014.971711

    Article  Google Scholar 

  • Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM (2019) ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 9(7):343

    Article  CAS  Google Scholar 

  • Zhang Y, Chen P, Ye G, Lin H, Ren D, Guo L, Wang Z (2019) Complete genome sequence of Pseudomonas parafulva PRS09-11288, a biocontrol strain produces the antibiotic phenazine-1-carboxylic acid. Curr Microbiol 76(9):1087–1091

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Chen M, Lin L, Yang L, Li Y, An Q (2012) Genome sequence of Enterobacter sp. strain SP1, an endophytic nitrogen-fixing bacterium isolated from sugarcane. J Bacteriol-Genome Announ 194(24):6963–6964

    Article  CAS  Google Scholar 

  • Zhu L, Huang J, Lu X, Zhou C (2022) Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. Front Plant Sci 13:952397. https://doi.org/10.3389/fpls.2022.952397

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuniga A, Donoso RA, Ruiz D, Ruz GA, Gonzalez B (2017) Quorum-sensing systems in the plant growth-promoting bacterium Paraburkholderia phytofirmans PsJN exhibit cross-regulation and are involved in biofilm formation. MPMI 30(7):557–565

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Author thanks the Chandigarh University for providing the infrastructure to carry out research work.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

PB and VD both conceived and designed the review paper. AD and SS contributed to paper realization.

Corresponding author

Correspondence to Vagish Dwibedi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this study.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors have read and approved the fnal version of the manuscript for publication.

Consent to participate

Not applicable.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadrecha, P., Singh, S. & Dwibedi, V. ‘A plant’s major strength in rhizosphere’: the plant growth promoting rhizobacteria. Arch Microbiol 205, 165 (2023). https://doi.org/10.1007/s00203-023-03502-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03502-2

Keywords

Navigation