[go: up one dir, main page]

Skip to main content
Log in

On the bit security of the Diffie-Hellman key

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let p be a finite field of p elements, where p is prime. The bit security of the Diffie-Hellman function over subgroups of * p and of an elliptic curve over p , is considered. It is shown that if the Decision Diffie-Hellman problem is hard in these groups, then the two most significant bits of the Diffie-Hellman function are secure. Under the weaker assumption of the computational (rather than decisional) hardness of the Diffie-Hellman problems, only about (log p)1/2 bits are known to be secure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Blake, I.F., Garefalakis, T.: On the complexity of the discrete logarithm and Diffie-Hellman problems. J. Compl. 20, 148–170 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blake, I.F., Seroussi, G., Smart, N.: Elliptic curves in cryptography. London Math. Soc., Lecture Note Series, Vol.265, Cambridge University Press 1999

  3. Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve Diffie–Hellman scheme. Lect. Notes in Comp. Sci. Springer-Verlag, Berlin, 2139, 201–212 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of secret keys in Diffie–Hellman and related schemes. Lect. Notes in Comp. Sci. Springer-Verlag, Berlin, 1109, 129–142 (1996)

    Google Scholar 

  5. Bourgain, J., Konyagin, S.V.: Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order. Comptes Rendus Mathematique 337, 75–80 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gennaro, R., Krawczyk, H., Rabin, T.: Hashed Diffie-Hellman over non-DDH groups. Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 3027, 361–381 (2004)

    MathSciNet  Google Scholar 

  7. González Vasco, M.I., Näslund, M., Shparlinski, I.E.: The hidden number problem in extension fields and its applications. Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2286, 105–117 (2002)

    MATH  Google Scholar 

  8. González Vasco M.I., Näslund, M., Shparlinski I.E.: New results on the hardness of Diffie-Hellman bits. Proc. Intern. Workshop on Public Key Cryptography, Singapore, 2004. Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2947, 159–172 (2004)

  9. González Vasco, M.I., Shparlinski, I.E.: On the security of Diffie-Hellman bits. Proc. Workshop on Cryptography and Computational Number Theory, Singapore 1999, Birkhäuser, 2001, 257–268

  10. Heath-Brown, D.R., Konyagin, S.V.: New bounds for Gauss sums derived from kth powers, and for Heilbronn's exponential sum. Ouart. J. Math. 51, 221–235 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Joux, A., Nguyen, K.: Separating decision Diffie-Hellman from Diffie-Hellman in cryptographic groups. J. Cryptology 16, 239–247 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kohel, D.R., Shparlinski, I.E.: Exponential sums and group generators for elliptic curves over finite fields. Lect. Notes in Comp. Sci. Springer-Verlag, Berlin, 1838, 395–404 (2000)

    MATH  MathSciNet  Google Scholar 

  13. Konyagin, S.V., Shparlinski, I.: Character sums with exponential functions and their applications. Cambridge Univ. Press, Cambridge, 1999

  14. Li, W.-C.W., Näslund, M., Shparlinski, I.E.: The hidden number problem with the trace and bit security of XTR and LUC. Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2442, 433–448 (2002)

    MATH  Google Scholar 

  15. Shparlinski, I.E.: Cryptographic applications of analytic number theory. Birkhäuser, 2003

  16. Shparlinski, I.E.: Security of polynomial transformations of the Diffie-Hellman key. Finite Fields and Their Appl. 10, 123–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shparlinski, I.E., Winterhof, A.: A hidden number problem in smal subgroups, Math. Comp., 74, 2073–2080 (2005), 1–12

    MATH  MathSciNet  Google Scholar 

  18. Silverman, J.H.: The arithmetic of elliptic curves. Springer-Verlag, Berlin, 1995

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Shparlinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, I., Garefalakis, T. & Shparlinski, I. On the bit security of the Diffie-Hellman key. AAECC 16, 397–404 (2006). https://doi.org/10.1007/s00200-005-0184-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-005-0184-x

Keywords

Navigation