[go: up one dir, main page]

Skip to main content
Log in

Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

A Correction to this article was published on 16 March 2020

This article has been updated

Abstract

In the context of the International GNSS Service (IGS), several IGS Ionosphere Associated Analysis Centers have developed different techniques to provide global ionospheric maps (GIMs) of vertical total electron content (VTEC) since 1998. In this paper we present a comparison of the performances of all the GIMs created in the frame of IGS. Indeed we compare the classical ones (for the ionospheric analysis centers CODE, ESA/ESOC, JPL and UPC) with the new ones (NRCAN, CAS, WHU). To assess the quality of them in fair and completely independent ways, two assessment methods are used: a direct comparison to altimeter data (VTEC-altimeter) and to the difference of slant total electron content (STEC) observed in independent ground reference stations (dSTEC-GPS). The main conclusion of this study, performed during one solar cycle, is the consistency of the results between so many different GIM techniques and implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 16 March 2020

    In the original publication of the articles, ���Methodology and consistency of slant and vertical assessments for ionospheric electron content models��� and ���Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle���, a common typo affecting the text only (not the computations) has been recently noticed. It compromised the definition of the scaling factor from Global Navigation Satellite Systems ionospheric delay to electron content is clarified in this erratum.

References

  • Abe O, Villamide XO, Paparini C, Radicella S, Nava B, Rodríguez-Bouza M (2017) Performance evaluation of gnss-tec estimation techniques at the grid point in middle and low latitudes during different geomagnetic conditions. J Geodesy 91(4):409–417

    Article  Google Scholar 

  • Azpilicueta F, Brunini C (2009) Analysis of the bias between TOPEX and GPS vTEC determinations. J Geodesy 83(2):121–127

    Article  Google Scholar 

  • Dach R, Schaer S, Arnold D, Orliac E, Prange L, Susnik A, Villiger A, Jäggi A (2016) CODE final product series for the IGS. http://www.aiub.unibe.ch/download/CODE, https://doi.org/10.7892/boris.75876

  • Dow JM, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83(3–4):191–198

    Article  Google Scholar 

  • Feltens J (2007) Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. Space Weather 5(12):1–17

    Article  Google Scholar 

  • Feltens J, Angling M, Jackson-Booth N, Jakowski N, Hoque M, Hernández-Pajares M, Aragón-Àngel A, Orús R, Zandbergen R (2011) Comparative testing of four ionospheric models driven with GPS measurements. Radio Sci 46(6). https://doi.org/10.1029/2010RS004584

  • Georgiadou P (1994) Modelling the ionosphere for an active control network of GPS stations. Delft Geodetic Computing Centre, Delft

    Google Scholar 

  • Gerzen T, Feltens J, Jakowski N, Galkin I, Denton R, Reinisch B, Zandbergen R (2015) Validation of plasmasphere electron density reconstructions derived from data on board CHAMP by IMAGE/RPI data. Adv Space Res 55(1):170–183

    Article  Google Scholar 

  • Gerzen T, Feltens J, Jakowski N, Galkin I, Reinisch B, Zandbergen R (2016) Analysis of the IMAGE RPI electron density data and CHAMP plasmasphere electron density reconstructions with focus on plasmasphere modelling. Adv Space Res 58(6):856–866

    Article  Google Scholar 

  • Ghoddousi-Fard R (2014) GPS ionospheric mapping at Natural Resources Canada. In: IGS workshop, Pasadena

  • Ghoddousi-Fard R, Héroux P, Danskin D, Boteler D (2011) Developing a GPS TEC mapping service over Canada. Space Weather 9:S06D11. https://doi.org/10.1029/2010SW000621

  • Ghoddousi-Fard R, Prikryl P, Lahaye F (2013) GPS phase difference variation statistics: a comparison between phase scintillation index and proxy indices. Adv Space Res 52(8):1397–1405

    Article  Google Scholar 

  • Hernández-Pajares M (2004) IGS ionosphere WG status report: performance of IGS ionosphere TEC maps-position paper. In: IGS workshop, Bern

  • Hernández-Pajares M, Juan J, Sanz J (1997) Neural network modeling of the ionospheric electron content at global scale using GPS data. Radio Sci 32(3):1081–1089

    Article  Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J, Sole J (1998) Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data. J Geophys Res Space Phys 103(A9):20789–20796

    Article  Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61(16):1237–1247

    Article  Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J (2000a) Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys Res Lett 27(16):2473–2476

    Article  Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J, Colombo OL (2000b) Application of ionospheric tomography to real-time GPS carrier-phase ambiguities Resolution, at scales of 400–1000 km and with high geomagnetic activity. Geophys Res Lett 27(13):2009–2012

    Article  Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J, Orus R, García-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geodesy 83(3–4):263–275

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Aragón-Àngel À, García-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geodesy 85(12):887–907

    Article  Google Scholar 

  • Hernández-Pajares M, Garcia-Fernández M, Rius A, Notarpietro R, Engeln Av, Olivares-Pulido G, Aragón-Ángel Á, García-Rigo A (2017a) Electron density extrapolation above F2 peak by the linear Vary-Chap model supporting new GNSS-LEO occultation missions. J Geophys Res Space Phys. https://doi.org/10.1002/2017JA023876

    Google Scholar 

  • Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R (2017b) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geodesy. (https://doi.org/10.1007/s00190-017-1032-z)

  • Juan JM, Rius A, Hernández-Pajares M, Sanz J (1997) A two-layer model of the ionosphere using global positioning system data. Geophys Res Lett 24(4):393–396

    Article  Google Scholar 

  • Komjathy A, Wilson B, Runge T, Boulat B, Mannucci T, Pi X, Reyes M, Sparks L (2002) A new ionospheric model for wide area differential GPS: the multi-shell approach. In: Proceedings of the ION national technical meeting, San Diego, CA, January 28–30. The Institute of Navigation (ION)

  • Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40(6):RS6006. https://doi.org/10.1029/2005RS003279

  • Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geodesy 89(4):331–345

    Article  Google Scholar 

  • Luo X, Xu H, Li Z, Zhang T, Gao J, Shen Z, Yang C, Wu Z (2017) Accuracy assessment of the global ionospheric model over the southern ocean based on dynamic observation. J Atmos Solar Terr Phys 154:127–131

    Article  Google Scholar 

  • Mannucci AJ, Wilson BD, Edwards CD (1993) A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network. In: Proceedings of the 6th international technical meeting of the satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, UT, September 1993. The Institute of Navigation (ION), pp 1323–1332

  • Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582

    Article  Google Scholar 

  • Mannucci AJ, Iijima B, Sparks L, Pi X, Wilson B, Lindqwister U (1999) Assessment of global TEC mapping using a three-dimensional electron density model. J Atmos Solar Terr Phys 61(16):1227–1236

    Article  Google Scholar 

  • Orús R, Hernández-Pajares M, Juan J, Sanz J (2005) Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J Atmos Solar Terr Phys 67(16):1598–1609

    Article  Google Scholar 

  • Rovira-Garcia A, Juan J, Sanz J, González-Casado G, Ibáñez D (2016) Accuracy of ionospheric models used in gnss and sbas: methodology and analysis. J Geodesy 90(3):229–240

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the earths ionosphere using the Global Positioning System, 1999. Ph.D. thesis, Ph. D. dissertation. University of Bern, Bern

  • Schaer S, Beutler G, Rothacher M, Springer TA (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center. In: Proceedings of the IGS AC workshop, Silver Spring, MD, USA, pp 181–192

  • Schaer S, Gurtner W, Feltens J (1998) IONEX: the ionosphere map exchange format version 1. In: Proceedings of the IGS AC workshop, Darmstadt, Germany, vol 9. ftp://igs.org/pub/data/format/ionex1.pdf

  • Vergados P, Komjathy A, Runge TF, Butala MD, Mannucci AJ (2016) Characterization of the impact of GLONASS observables on receiver bias estimation for ionospheric studies. Radio Sci 51(7):1010–1021

    Article  Google Scholar 

  • Yuan Y, Ou J (2002) Differential areas for differential stations (dads): a new method of establishing grid ionospheric model. Chin Sci Bull 47(12):1033–1036

    Article  Google Scholar 

  • Yuan Y, Ou J (2004) A generalized trigonometric series function model for determining ionospheric delay. Prog Nat Sci 14(11):1010–1014

    Article  Google Scholar 

  • Zhang H, Xu P, Han W, Ge M, Shi C (2013) Eliminating negative VTEC in global ionosphere maps using inequality-constrained least squares. Adv Space Res 51(6):988–1000

    Article  Google Scholar 

Download references

Acknowledgements

This work has been possible thanks to the collaborative and friendly framework of the International GNSS Service, an organization providing first class open data and open products to the scientific and technical GNSS communities (see Dow et al. 2009). We appreciate the editorial inputs of Dr. René Zandbergen from ESA/ESOC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Hernández-Pajares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A. et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geod 92, 691–706 (2018). https://doi.org/10.1007/s00190-017-1088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1088-9

Keywords

Navigation