[go: up one dir, main page]

Skip to main content
Log in

Deburring of complex-shaped drilling intersections: a numerical method for modelling the tool path

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

When drilling holes, burrs are created in particular on the exit surface. Existing deburring tools and methods enable the deburring of plane exit surfaces or slightly curved cross-drilled holes. However, these tools do not meet practical requirements for deburring in the machining industry where component geometries are often complex. This paper presents a numerical method, which enables deburring of complex-shaped drilling intersections with ball-end cutters. First, the particular intersection is analysed as it defines the maximum tool diameter of the ball-end cutter. Subsequently, a three-axis tool path for ball-end cutters is generated to correlate with the intersection geometry thus enabling constant chamfering and avoiding tool collisions. The model is verified by an experiment using the material AlSi7Mg and measuring secondary burr heights and chamfer widths. Subsequently, the functionality of the model for further geometry variants is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gillespie LK, Blotter PT (1976) The formation and properties of machining burrs, J Eng Ind Trans ASME Feb:66–74

  2. Gillespie LK, Albright RK, Neal BJ (1976) Burrs produced by end milling, Bendix, Kansas City Division, BDX6131503

  3. Dornfeld DA, Kim JS, Dechow H, Hewson J, Chen LJ (1999) Drilling burr formation in titanium alloy, Ti-6Al-4V. Ann CIRP 48(1):73–76

    Article  Google Scholar 

  4. Dornfeld DA (2004) Strategies for preventing and minimizing burr formation, CIRP HPC Conference, Aachen

  5. Min S, Kim J, Dornfeld DA (2001) Development of a drilling burr control chart for low alloy steel, AISI4118. J Mater Process Technol 113:4–9

    Article  Google Scholar 

  6. Aurich JC, Dornfeld DA, Arrazola PJ, Franke V, Leitz L, Min S (2009) Burrs–analysis, control and removal. CIRP Ann Manuf Technol 58(2):519–542

    Article  Google Scholar 

  7. Beier H-M, Nothnagel R (2015) Praxisbuch Entgrattechnik – Wegweiser zur Gratminimierung und Gratbeseitugung für Konstruktion und Fertigung, 2nd edn. Hanser, München

    Book  Google Scholar 

  8. Aurich JC (2006) SpanSauber – Ergebnisbericht der Untersuchung zur Beherrschung der Sauberkeit von zerspanend hergestellten Bauteilen, Lehrstuhl für Fertigungstechnik und Betriebsorganisation. Technische Universität Kaiserslautern, Kaiserslautern

    Google Scholar 

  9. Gillespie LK (1979) Deburring precision miniature parts. Precis Eng 1(4):189–198

    Article  Google Scholar 

  10. Lee UL, Ko SL (2008) Development of deburring tool for burrs at intersecting holes. J Mater Process Technol 201:454–459

    Article  Google Scholar 

  11. Beier H-M, Nothnagel R (2005) Hochgeschwindigkeitsentgraten, wt Werkstattstechnik online 95:821–827

  12. Kim KH, Park NJ (2005) A new deburring tool for intersecting holes. Proc Inst Mech Eng B J Eng Manuf 219:865–870

    Article  Google Scholar 

  13. Cho C-H, Kim K-H (2010) Product development with TRIZ: design evolution of deburring tools for intersecting holes. J Mech Sci Technol 24:169–173

    Article  Google Scholar 

  14. Cho C-H, Chae S-W, Kim K-H (2014) Search for a new design of deburring tools for intersecting holes with TRIZ. Int J Manuf Technol 70:2221–2231

    Article  Google Scholar 

  15. Ton TP, Park HY, Ko SL (2011) Experimental analysis of deburring process on inclined exit surface by new deburring tool. CIRP Ann Manuf Technol 60:129–132

    Article  Google Scholar 

  16. Avila MC (2004) Deburring of cross-drilled hole intersections by mechanized cutting, LMA. Annual Reports, pp 10–20

  17. Güth S, Abele E (2013) Automatisiertes Entgraten von Kreuzbohrungen–Werkzeugbenchmark, Werkstatt – Betrieb, WB10:74–78

  18. Pischan M (2013) Deburring of cross holes in titanium using industrial robots, WGP congress. Adv Mater Res 769:147–154

    Article  Google Scholar 

  19. Schützer K, Abele E, Güth S (2015) Simulation-based deburring tool and process development. CIRP Ann Manuf Technol 64:357–360

    Article  Google Scholar 

  20. Sato T, Sato Y, Maekawa T (2016) Tool path generation for chamfering drill holes of a pipe with constant width. Comput Aided Des 78:26–35

    Article  Google Scholar 

  21. Abele E, Schützer K, Güth S, Meinhard A (2018) Deburring of cross-drilled holes with ball-end cutters – modeling the tool path. Prod Eng 12:25–33

    Article  Google Scholar 

  22. Yong T, Narayanaswami R (2003) A parametric interpolator with confined chord error, acceleration and deceleration for NC machining. Comput Aided Des 35:1249–1259

    Article  Google Scholar 

  23. Helleno AL, Schützer K (2006) Investigation of tool path interpolation on the manufacturing of die and molds with HSC technology. J Mater Process Technol 179:178–184

    Article  Google Scholar 

  24. Schützer K, Stroh C, Schulz H (2010) C-space based approach for the calculation of toolpaths for freeform surfaces in B-spline description. CIRP Ann Manuf Technol 59:421–424

    Article  Google Scholar 

Download references

Acknowledgements

The authors are responsible for the content of this publication. The authors are also grateful to the anonymous reviewers for their constructive criticism which served to improve this paper.

Funding

This research and development project is funded by the German Research Foundation (DFG AB 133/94-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Meinhard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schützer, K., Abele, E., Meinhard, A. et al. Deburring of complex-shaped drilling intersections: a numerical method for modelling the tool path. Int J Adv Manuf Technol 102, 67–79 (2019). https://doi.org/10.1007/s00170-018-3205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-3205-1

Keywords

Navigation