[go: up one dir, main page]

Skip to main content
Log in

Conservative fragments of \({{S}^{1}_{2}}\) and \({{R}^{1}_{2}}\)

  • Original Article
  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Conservative subtheories of \({{R}^{1}_{2}}\) and \({{S}^{1}_{2}}\) are presented. For \({{S}^{1}_{2}}\), a slight tightening of Jeřábek’s result (Math Logic Q 52(6):613–624, 2006) that \({T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}\) is presented: It is shown that \({T^{0}_{2}}\) can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this \({\forall\Sigma^{b}_{1}}\)-theory, we define a \({\forall\Sigma^{b}_{0}}\)-theory, \({T^{-1}_{2}}\), for the \({\forall\Sigma^{b}_{0}}\)-consequences of \({S^{1}_{2}}\). We show \({T^{-1}_{2}}\) is weak by showing it cannot \({\Sigma^{b}_{0}}\)-define division by 3. We then consider what would be the analogous \({\forall\hat\Sigma^{b}_{1}}\)-conservative subtheory of \({R^{1}_{2}}\) based on Pollett (Ann Pure Appl Logic 100:189–245, 1999. It is shown that this theory, \({{T}^{0,\left\{2^{(||\dot{id}||)}\right\}}_{2}}\), also cannot \({\Sigma^{b}_{0}}\)-define division by 3. On the other hand, we show that \({{S}^{0}_{2}+open_{\{||id||\}}}\)-COMP is a \({\forall\hat\Sigma^{b}_{1}}\)-conservative subtheory of \({R^{1}_{2}}\). Finally, we give a refinement of Johannsen and Pollett (Logic Colloquium’ 98, 262–279, 2000) and show that \({\hat{C}^{0}_{2}}\) is \({\forall\hat\Sigma^{b}_{1}}\)-conservative over a theory based on open cl-comprehension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen B.: Arithmetizing uniform NC. Ann. Pure Appl. Logic 53(1), 1–50 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beckmann A., Buss S.R.: Polynomial local search in the polynomial hierarchy and witnessing in fragments of bounded arithmetic. J. Math. Logic 9(1), 103–138 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beckmann, A., Buss, S.R.: Characterising definable search problems in bounded arithmetic via proof notations. In: Schindler, R. (ed.) Ways of Proof Theory, Ontos Series on Mathematical Logic, pp. 65–134 (2010)

  4. Boughattas, S., Kołodziejczyk, L.A.: The strength of sharply bounded induction requires MSP (2009) (to appear Annals of Pure and Applied Logic)

  5. Boughattas, S., Ressayre, J.P.: Bootstrapping I (2009) (to appear Annals of Pure and Applied Logic)

  6. Buss S.R.: Bounded Arithmetic. Bibliopolis, Napoli (1986)

    MATH  Google Scholar 

  7. Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge University Press (to appear in Perspectives in Logic)

  8. Clote P.: Polynomial size Frege proofs of certain combinatorial principles. In: Clote, P., Krajíček, J. (eds) Arithmetic, Proof Theory and Computational Complexity, Oxford Science Publications, Oxford (1993)

    Google Scholar 

  9. Clote P., Takeuti G.: First-order bounded arithmetic and small boolean circuit complexity classes. In: Clote, P., Remmel, J. (eds) Feasible Mathematics II, pp. 154–218. Birkhauser, Boston (1995)

    Google Scholar 

  10. Hájek P., Pudlák P.: Metamathematics of First-Order Arithmetics. Springer, Berlin (1993)

    Google Scholar 

  11. Hanika, J.: Search problems and bounded arithmetic. Ph.D. Thesis. Charles University (2004)

  12. Jeřábek E.: The strength of sharply bounded induction. Math. Logic Q. 52(6), 613–624 (2006)

    Article  MATH  Google Scholar 

  13. Johannsen, J.: On sharply bounded length induction. In Proceedings of Computer Science Logic ’95, pp. 362–367. Paderborn 1995. Springer LNCS 1092. (1996)

  14. Johannsen J.: A model-theoretic property of sharply bounded formulae, with some applications. Math. Logic Q. 44(2), 205–215 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Johannsen, J., Pollett, C.: On proofs about threshold circuits and counting hierarchies. In Proceedings of Thirteenth IEEE Symposium on Logic in Computer Science, pp. 444–452

  16. Johannsen, J., Pollett, C.: On the \({\Delta^b_1}\)-bit-comprehension rule. In: Buss, S., Hájek, P., Pudlák, P. (eds.) Logic Colloquium ’98. ASL Lecture Notes in Logic, pp. 262–279 (2000)

  17. Kołodziejczyk, L.A.: Phuong Nguyen and Neil Thapen. The provably total NP search problems of weak second order arithmetic. Preliminary manuscript (2009)

  18. Krajíček J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  19. Krajíček J., Pudlák P., Takeuti G.: Bounded arithmetic and polynomial hierarchy. Ann. Pure Appl. Logic 52, 143–154 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Krajíček J., Skelley A., Thapen N.: NP search problems in low fragments of bounded arithmetic. J. Symb. Logic 72(2), 649–672 (2007)

    Article  MATH  Google Scholar 

  21. Mantzivis S.-G.: Circuits in bounded arithmetic, part I. Ann. Math. Artif. Intell. 6, 127–156 (1991)

    Article  MathSciNet  Google Scholar 

  22. Pollett C.: Structure and definability in general bounded arithmetic theories. Ann. Pure Appl. Logic 100, 189–245 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pollett C.: Multifunction algebras and the provability of PH ↓. Ann. Pure Appl. Logic 104, 279–303 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pollett C.: On the bounded version of Hilbert’s tenth problem. Arch. Math. Logic 42(5), 469–488 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pudlák P.: Fragments of bounded arithmetic and the lengths of proofs. J. Symb. Logic 73(4), 1389–1406 (2008)

    Article  MATH  Google Scholar 

  26. Shepherdson, J.C.: Non-standard models for fragments of number theory. In Proceedings of the 1963 International Symposium at Berkeley on the Theory of Models, pp. 342–358. North-Holland, Amsterdam (1965)

  27. Takeuti G.: RSUV isomorphisms. In: Clote, P., Krajíček, J. (eds) Arithmetic, Proof Theory and Computational Complexity, pp. 364–386. Oxford Science Publications, Oxford (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Pollett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollett, C. Conservative fragments of \({{S}^{1}_{2}}\) and \({{R}^{1}_{2}}\) . Arch. Math. Logic 50, 367–393 (2011). https://doi.org/10.1007/s00153-010-0220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-010-0220-9

Keywords

Mathematics Subject Classification (2000)

Navigation