[go: up one dir, main page]

Skip to main content
Log in

Sparse representation with enhanced nonlocal self-similarity for image denoising

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In the past decade, the sparsity prior of image is investigated and utilized widely as the development of compressed sensing theory. The dictionary learning combined with the convex optimization methods promotes the sparse representation to be one of the state-of-the-art techniques in image processing, such as denoising, super-resolution, deblurring, and inpainting. Empirically, the sparser of image representation, the better of image restoration. In this work, the non-local clustering sparse representation is applied with optimized matching strategies of self-similar patches, which break through the bottleneck of search window (localization) and improve the estimation effect of the sparse coefficient. The experimental results show that the proposed method provides an effective suppression on noise, preserves more details of image and presents more comfortable visual experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buades, A., Coll, B., Morel, J.M.: A review of image de-noising algorithms with a new one. J. Multiscale Model. Simul. 4(5), 490–530 (2010)

    MATH  Google Scholar 

  2. Zhang, L., Dong, W., Zhang, D., Shi, G.: Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn. 43(4), 1531–1549 (2010)

    Article  Google Scholar 

  3. Dabov, K., Foi, A., Katkovnik, V., et al.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  4. Xu, J., Zhang, L., Zuo, W., Zhang, D., Feng, X.: Patch group based nonlocal self-similarity prior learning for image denoising, Proc. IEEE International Conference on Computer Vision, October (2015) pp. 64–78

  5. Mairal, J., Bach, F., Ponce, J., Sapiro, G, Zisserman, A: Non-local sparse models for image restoration. Proc. IEEE International Conference on Computer Vision, September 2009, pp. 2272–2279

  6. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2012)

    Article  MathSciNet  Google Scholar 

  7. Huang, W., Wang, Q., Li, X.L.: Denoising-based multiscale feature fusion for remote sensing image captioning. IEEE Geosci. Remote Sens. Lett. 18(3), 436–440 (2021)

    Article  Google Scholar 

  8. Yuan, Y., Lin, J.Z., Wang, Q.: Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization. IEEE Transactions Cybern. 46(12), 2966–2977 (2016)

    Article  Google Scholar 

  9. Kaur, M., Sharma, K., et al.: Image denoising using wavelet thresholding. Proc. Int. J. Eng. Comput. Sci. 2(10), 2932–2935 (2012)

    Google Scholar 

  10. Elad, M., et al.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3735–3746 (2006)

    Article  MathSciNet  Google Scholar 

  11. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration, Proc. IEEE International Conference on Computer Vision, November (2011) pp. 479–486

  12. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Image Processing Transactions 22(4), 1620–1630 (2012)

    Article  MathSciNet  Google Scholar 

  13. Wang, S., Zhang, L., Liang, Y.: Nonlocal spectral prior model for low-level vision, Proc. 11th Asian conference on Computer Vision, November (2012)

  14. Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MathSciNet  Google Scholar 

  15. Chen, F., Zhang, L., Yu, H. M.: External Patch Prior Guided Internal Clustering for Image Denoising, Proc. IEEE International Conference on Computer Vision, December (2015) pp 603–611

  16. Guo, Q., Zhang, C.M., et al.: An efficient SVD-based method for image denoising. IEEE Trans. Circuits Syst. Video Technol. 26(5), 868–880 (2016)

    Article  Google Scholar 

  17. Gu, S. H., Zhang, L. et al.: Weighted nuclear norm minimization with application to image denoising, Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2014, pp. 1–8

  18. Xie, Y., Gu, S.H., et al.: Weighted schatten p-norm minimization for image denoising and background subtraction. IEEE Trans. Image Process. 25(10), 4842–4857 (2016)

    Article  MathSciNet  Google Scholar 

  19. Wu, T., Zhang, R., Jiao, Z. H. et al.: Adaptive spectral rotation via joint cluster and pairwise structure. IEEE Transactions on Knowledge and Data Engineering (Early Access), April (2021)

  20. Zhang, R., Li, X. L., Zhang, H. Y. et al., “Geodesic Multi-Class SVM with Stiefel Manifold Embedding”, IEEE Transactions on Pattern Analysis and Machine Intelligence ( Early Access), March (2021)

  21. Zhang, R., Li, X.L.: Unsupervised feature selection via data reconstruction and side information. IEEE Trans. Image Process. 29, 8097–8106 (2020)

    Article  MathSciNet  Google Scholar 

  22. Zhang, R., Zhang, H.Y., Li, X.L.: Robust multi-task learning with flexible manifold constraint. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2150–2157 (2021)

    Article  Google Scholar 

  23. Zhang, R., Tong, H. H.: Robust Principal Component Analysis with Adaptive Neighbors, 33rd Conference on Neural Information Processing Systems, (2019)

  24. Gu, S.H., Xie, Q., et al.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vision 121(7), 183–208 (2017)

    Article  Google Scholar 

  25. Dong, W., Zhang, L. et al.: Centralized sparse representation for image restoration, Proc. IEEE International Conference on Computer Vision, November 2011, pp 1259–1266

  26. Candes, E. J.: Compressive Sampling, Proceedings of the International Congress of Mathematicians, Madrid, Spain, (2006)

  27. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles exact signal reconstruction from highly incomplete frequency information. IEEE Transactions Information Theory 52(2), 489–509 (2016)

    Article  MathSciNet  Google Scholar 

  28. Candes, E.J., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Prolems 23, 969–985 (2017)

    Article  MathSciNet  Google Scholar 

  29. Daubechies, I., Defrise, M., Dye Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  30. Zhang, L., Zuo, W.M.: Image restoration: from sparse and low-rank priors to deep priors. IEEE Signal Process. Mag. 34(5), 172–179 (2017)

    Article  Google Scholar 

  31. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  Google Scholar 

  32. Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50(11), 2744–2756 (2002)

    Article  Google Scholar 

  33. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(13), 607–609 (1996)

    Article  Google Scholar 

  34. Gordo, A., Almazan, J. et al.: Deep image retrieval: learning global representations for image search, Proc. European Conference on Computer Vision, September 2016, pp 241–257

  35. Shlens, J: A Tutorial on Principal Component Analysis, arXiv:1404.1100, April (2014)

  36. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  37. Zoran, D., Weiss, Y. et al.: Scale invariance and noise in natural images, Proc. IEEE 12th International Conference on Computer Vision, October 2009, pp 2209–2216

  38. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Transactions Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2016)

    Article  Google Scholar 

  39. Zhang, K., Zuo, W.M., et al.: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising. IEEE Image Process. Transactions 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  40. Zhang, K., Zuo, W.M., Zhang, L.: Ffdnet: toward a fast and flexible solution for cnn based image denoising. IEEE Image Process. Transactions 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  41. Dong, W., Wang, P.Y., et al.: Denoising prior driven deep neural network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 41(10), 2305–2318 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Li, C., Zeng, X. et al. Sparse representation with enhanced nonlocal self-similarity for image denoising. Machine Vision and Applications 32, 110 (2021). https://doi.org/10.1007/s00138-021-01232-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-021-01232-3

Keywords

Navigation