[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Relationship between COVID-19 and ICU-acquired colonization and infection related to multidrug-resistant bacteria: a prospective multicenter before-after study

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Patients presenting the most severe form of coronavirus disease 2019 (COVID-19) pneumonia, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have a prolonged intensive care unit (ICU) stay and are exposed to broad-spectrum antibiotics, but the impact of COVID-19 on antimicrobial resistance is unknown.

Methods

Observational prospective before-after study in 7 ICUs in France. All consecutive patients with an ICU stay > 48 h and a confirmed SARS-CoV-2 infection were included prospectively and followed for 28 days. Patients underwent systematic screening for colonization with multidrug-resistant (MDR) bacteria upon admission and every week subsequently. COVID-19 patients were compared to a recent prospective cohort of control patients from the same ICUs. The primary objective was to investigate the association of COVID-19 with the cumulative incidence of a composite outcome including ICU-acquired colonization and/or infection related to MDR bacteria (ICU-MDR-col and ICU-MDR-inf, respectively).

Results

From February 27th, 2020 to June 2nd, 2021, 367 COVID-19 patients were included, and compared to 680 controls. After adjustment for prespecified baseline confounders, the cumulative incidence of ICU-MDR-col and/or ICU-MDR-inf was not significantly different between groups (adjusted sub-hazard ratio [sHR] 1.39, 95% confidence interval [CI] 0.91–2.09). When considering both outcomes separately, COVID-19 patients had a higher incidence of ICU-MDR-inf than controls (adjusted sHR 2.50, 95% CI 1.90–3.28), but the incidence of ICU-MDR-col was not significantly different between groups (adjusted sHR 1.27, 95% CI 0.85–1.88).

Conclusion

COVID-19 patients had an increased incidence of ICU-MDR-inf compared to controls, but the difference was not significant when considering a composite outcome including ICU-MDR-col and/or ICU-MDR-inf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

3GC:

Third-generation cephalosporins

AMR:

Antimicrobial resistance

CARB:

Carbapenem-resistant Acinetobacter baumannii

COPD:

Chronic obstructive pulmonary disease

COVID-19:

Coronavirus disease 2019

ECLS:

Extracorporeal life support

ECMO:

Extracorporeal membrane oxygenation

ESBL:

Extended-spectrum beta-lactamase

EUCAST:

European Committee on Antimicrobial Susceptibility Testing

HAI:

Healthcare-associated infection

HAP:

Healthcare-associated pneumonia

HIV:

Human immunodeficiency virus

ICU:

Intensive care unit

ICU-MDR-col:

ICU-acquired colonization with multidrug-resistant bacteria

ICU-MDR-inf:

ICU-acquired infection with multidrug-resistant bacteria

IQR:

Interquartile range

IMV:

Invasive mechanical ventilation

MDR:

Multidrug-resistant

MRSA:

Methicillin-resistant Staphylococcus aureus

PCR:

Polymerase chain reaction

SAPS-II:

Simplified Acute Physiology Score II

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SOFA:

Sequential organ failure assessment

SOT:

Solid organ transplant

VAP:

Ventilator-associated pneumonia

VRE:

Vancomycin-resistant Enterococcus sp.

References

  1. Schmidt M, Hajage D, Demoule A et al (2021) Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med 47:60–73. https://doi.org/10.1007/s00134-020-06294-x

    Article  CAS  Google Scholar 

  2. Rouzé A, Martin-Loeches I, Povoa P et al (2021) Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study. Intensive Care Med. https://doi.org/10.1007/s00134-020-06323-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Buetti N, Ruckly S, de Montmollin E et al (2021) COVID-19 increased the risk of ICU-acquired bloodstream infections: a case-cohort study from the multicentric OUTCOMEREA network. Intensive Care Med 47:180–187. https://doi.org/10.1007/s00134-021-06346-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Langford BJ, So M, Raybardhan S et al (2021) Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect 27:520–531. https://doi.org/10.1016/j.cmi.2020.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rawson TM, Ming D, Ahmad R et al (2020) Antimicrobial use, drug-resistant infections and COVID-19. Nat Rev Microbiol 18:409–410. https://doi.org/10.1038/s41579-020-0395-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Charani E, McKee M, Ahmad R et al (2021) Optimising antimicrobial use in humans-review of current evidence and an interdisciplinary consensus on key priorities for research. Lancet Reg Health Eur 7:100161. https://doi.org/10.1016/j.lanepe.2021.100161

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vincent J-L, Sakr Y, Singer M et al (2020) Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 323:1478–1487. https://doi.org/10.1001/jama.2020.2717

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barbier F, Pommier C, Essaied W et al (2016) Colonization and infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in ICU patients: what impact on outcomes and carbapenem exposure? J Antimicrob Chemother 71:1088–1097. https://doi.org/10.1093/jac/dkv423

    Article  CAS  PubMed  Google Scholar 

  9. Bickenbach J, Schöneis D, Marx G et al (2018) Impact of multidrug-resistant bacteria on outcome in patients with prolonged weaning. BMC Pulm Med. https://doi.org/10.1186/s12890-018-0708-3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barbier F, Lisboa T, Nseir S (2016) Understanding why resistant bacteria are associated with higher mortality in ICU patients. Intensive Care Med 42:2066–2069. https://doi.org/10.1007/s00134-015-4138-x

    Article  PubMed  Google Scholar 

  11. O’Fallon E, Gautam S, D’Agata EMC (2009) Colonization with multidrug-resistant gram-negative bacteria: prolonged duration and frequent cocolonization. Clin Infect Dis 48:1375–1381. https://doi.org/10.1086/598194

    Article  PubMed  Google Scholar 

  12. Worby CJ, Earl AM, Turbett SE et al (2020) Acquisition and Long-term Carriage of Multidrug-Resistant Organisms in US International Travelers. Open Forum Infect Dis 7:ofaa543. https://doi.org/10.1093/ofid/ofaa543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu S, You Y, Zhang S et al (2022) Multidrug-resistant infection in COVID-19 patients: a meta-analysis. J Infect. https://doi.org/10.1016/j.jinf.2022.10.043

    Article  PubMed  PubMed Central  Google Scholar 

  14. Langford BJ, Soucy J-PR, Leung V et al (2022) Antibiotic resistance associated with the COVID-19 pandemic: a systematic review and meta-analysis. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2022.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kariyawasam RM, Julien DA, Jelinski DC et al (2022) Antimicrobial resistance (AMR) in COVID-19 patients: a systematic review and meta-analysis (November 2019-June 2021). Antimicrob Resist Infect Control 11:45. https://doi.org/10.1186/s13756-022-01085-z

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kreitmann L, Vasseur M, Jermoumi S et al (2023) Relationship between immunosuppression and intensive care unit-acquired colonization and infection related to multidrug-resistant bacteria: a prospective multicenter cohort study. Intensive Care Med. https://doi.org/10.1007/s00134-022-06954-0

    Article  PubMed  Google Scholar 

  17. EUCAST (2020) The European committee on antimicrobial susceptibility testing. Breakpoint tables for interpretation of MICs and zone diameters version 10.0. EUCAST

    Google Scholar 

  18. Magiorakos A-P, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  19. Kalil AC, Metersky ML, Klompas M et al (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63:e61–e111. https://doi.org/10.1093/cid/ciw353

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mermel LA, Allon M, Bouza E et al (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49:1–45. https://doi.org/10.1086/599376

    Article  CAS  PubMed  Google Scholar 

  21. Solomkin JS, Mazuski JE, Bradley JS et al (2010) Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the surgical infection society and the Infectious Diseases Society of America. Clin Infect Dis 50:133–164. https://doi.org/10.1086/649554

    Article  CAS  PubMed  Google Scholar 

  22. Osmon DR, Berbari EF, Berendt AR et al (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56:e1–e25. https://doi.org/10.1093/cid/cis803

    Article  PubMed  Google Scholar 

  23. Berbari EF, Kanj SS, Kowalski TJ et al (2015) 2015 Infectious Diseases Society of America (IDSA) clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults. Clin Infect Dis 61:e26–e46. https://doi.org/10.1093/cid/civ482

    Article  PubMed  Google Scholar 

  24. Habib G, Lancellotti P, Antunes MJ et al (2015) 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J 36:3075–3128. https://doi.org/10.1093/eurheartj/ehv319

    Article  PubMed  Google Scholar 

  25. Hooton TM, Bradley SF, Cardenas DD et al (2010) Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 international clinical practice guidelines from the Infectious Diseases Society of America. Clin Infect Dis 50:625–663. https://doi.org/10.1086/650482

    Article  PubMed  Google Scholar 

  26. RECOVERY Collaborative Group, Horby P, Lim WS et al (2021) Dexamethasone in hospitalized patients with COVID-19. N Engl J Med 384:693–704. https://doi.org/10.1056/NEJMoa2021436

    Article  Google Scholar 

  27. Prentice RL, Kalbfleisch JD, Peterson AV et al (1978) The analysis of failure times in the presence of competing risks. Biometrics 34:541–554

    Article  CAS  PubMed  Google Scholar 

  28. Lederer DJ, Bell SC, Branson RD et al (2019) Control of confounding and reporting of results in causal inference studies. guidance for authors from editors of respiratory, sleep, and critical care journals. Ann Am Thorac Soc 16:22–28. https://doi.org/10.1513/AnnalsATS.201808-564PS

    Article  PubMed  Google Scholar 

  29. Sempere J, Llamosí M, López Ruiz B et al (2022) Effect of pneumococcal conjugate vaccines and SARS-CoV-2 on antimicrobial resistance and the emergence of Streptococcus pneumoniae serotypes with reduced susceptibility in Spain, 2004–20: a national surveillance study. Lancet Microbe 3:e744–e752. https://doi.org/10.1016/S2666-5247(22)00127-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Center for Disease Control (2022) COVID-19: US impact on antimicrobial resistance, special report 2022. National Center for Emerging and Zoonotic Infectious Diseases. National Center for Emerging and Zoonotic Infectious Diseases, CDC

    Google Scholar 

  31. Lepape A, Machut A, Bretonnière C et al (2022) Effect of SARS-CoV-2 infection and pandemic period on healthcare-associated infections acquired in intensive care units. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2022.10.023

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bogossian EG, Taccone FS, Izzi A et al (2020) The acquisition of multidrug-resistant bacteria in patients admitted to COVID-19 intensive care units: a monocentric retrospective case control study. Microorganisms 8:1821. https://doi.org/10.3390/microorganisms8111821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ranney ML, Griffeth V, Jha AK (2020) Critical supply shortages-the need for ventilators and personal protective equipment during the COVID-19 pandemic. N Engl J Med 382:e41. https://doi.org/10.1056/NEJMp2006141

    Article  CAS  PubMed  Google Scholar 

  34. Russell CD, Fairfield CJ, Drake TM et al (2021) Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study. Lancet Microbe 2:e354–e365. https://doi.org/10.1016/S2666-5247(21)00090-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vacheron C-H, Lepape A, Savey A et al (2022) Increased incidence of ventilator-acquired pneumonia in coronavirus disease 2019 patients: a multicentric cohort study. Crit Care Med 50:449–459. https://doi.org/10.1097/CCM.0000000000005297

    Article  CAS  PubMed  Google Scholar 

  36. Razazi K, Arrestier R, Haudebourg AF et al (2020) Risks of ventilator-associated pneumonia and invasive pulmonary aspergillosis in patients with viral acute respiratory distress syndrome related or not to Coronavirus 19 disease. Crit Care 24:699. https://doi.org/10.1186/s13054-020-03417-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hue S, Beldi-Ferchiou A, Bendib I et al (2020) Uncontrolled innate and impaired adaptive immune responses in patients with COVID-19 acute respiratory distress syndrome. Am J Respir Crit Care Med 202:1509–1519. https://doi.org/10.1164/rccm.202005-1885OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tardiveau C, Monneret G, Lukaszewicz A-C et al (2022) A 9-mRNA signature measured from whole blood by a prototype PCR panel predicts 28-day mortality upon admission of critically ill COVID-19 patients. Front Immunol. https://doi.org/10.3389/fimmu.2022.1022750

    Article  PubMed  PubMed Central  Google Scholar 

  39. Scaravilli V, Guzzardella A, Madotto F et al (2022) Impact of dexamethasone on the incidence of ventilator-associated pneumonia in mechanically ventilated COVID-19 patients: a propensity-matched cohort study. Crit Care 26:176. https://doi.org/10.1186/s13054-022-04049-2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Saura O, Rouzé A, Martin-Loeches I et al (2022) Relationship between corticosteroid use and incidence of ventilator-associated pneumonia in COVID-19 patients: a retrospective multicenter study. Crit Care 26:292. https://doi.org/10.1186/s13054-022-04170-2

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lamouche-Wilquin P, Souchard J, Pere M et al (2022) Early steroids and ventilator-associated pneumonia in COVID-19-related ARDS. Crit Care 26:233. https://doi.org/10.1186/s13054-022-04097-8

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rodríguez-Baño J, Navarro MD, Romero L et al (2008) Risk-factors for emerging bloodstream infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Clin Microbiol Infect 14:180–183. https://doi.org/10.1111/j.1469-0691.2007.01884.x

    Article  PubMed  Google Scholar 

  43. Kreitmann L, Monard C, Dauwalder O et al (2020) Early bacterial co-infection in ARDS related to COVID-19. Intensive Care Med 46:1787–1789. https://doi.org/10.1007/s00134-020-06165-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rouze A, Martin-Loeches I, Povoa P et al (2021) Early bacterial identification among intubated patients with COVID-19 or influenza pneumonia: a European multicenter comparative cohort study. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.202101-0030OC

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alhazzani W, Møller MH, Arabi YM et al (2020) Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. https://doi.org/10.1007/s00134-020-06022-5

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chanderraj R, Baker JM, Kay SG et al (2022) In critically ill patients, anti-anaerobic antibiotics increase risk of adverse clinical outcomes. Eur Respir J. https://doi.org/10.1183/13993003.00910-2022

    Article  Google Scholar 

  47. Martin-Loeches I, Torres A, Rinaudo M et al (2015) Resistance patterns and outcomes in intensive care unit (ICU)-acquired pneumonia. Validation of European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC) classification of multidrug resistant organisms. J Infect 70:213–222. https://doi.org/10.1016/j.jinf.2014.10.004

    Article  PubMed  Google Scholar 

  48. Patel SJ, Oliveira AP, Zhou JJ et al (2014) Risk factors and outcomes of infections caused by extremely drug-resistant gram-negative bacilli in patients hospitalized in intensive care units. Am J Infect Control 42:626–631. https://doi.org/10.1016/j.ajic.2014.01.027

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zahar J-R, Clech C, Tafflet M et al (2005) Is methicillin resistance associated with a worse prognosis in Staphylococcus aureus ventilator-associated pneumonia? Clin Infect Dis 41:1224–1231. https://doi.org/10.1086/496923

    Article  PubMed  Google Scholar 

  50. Committee GS, Bertolini G, Nattino G et al (2018) Mortality attributable to different Klebsiella susceptibility patterns and to the coverage of empirical antibiotic therapy: a cohort study on patients admitted to the ICU with infection. Intensive Care Med 44:1709–1719. https://doi.org/10.1007/s00134-018-5360-0

    Article  CAS  Google Scholar 

  51. Ayzac L, Girard R, Baboi L et al (2016) Ventilator-associated pneumonia in ARDS patients: the impact of prone positioning. A secondary analysis of the PROSEVA trial. Intensive Care Med 42:871–878. https://doi.org/10.1007/s00134-015-4167-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hugo Coronado, Apolline Briatte, Nafas Abdallah Paune, Hajar Chouiki, Stéphanie Beaussart, Fabienne Jarosz-Thévenin, Anne Dewatine and Sabine Janowski for their help in data curation and study supervision. We thank Alison Holmes and Ho Kwong Li for their critical appraisal of the manuscript.

Funding

There was no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: LK, SN. Statistical analysis: AD, JL. Data curation: LK, SJ, MV, MC, EN, JCR, FW, PG, SK, YZ, NVG, CV. Manuscript drafting: LK, JL, SN. Critical revision: all authors.

Corresponding author

Correspondence to Saad Nseir.

Ethics declarations

Conflicts of interest

LK has received speaking fees and a research scholarship from BioMérieux, and has been employed by Transgene. SN has received speaking fees from MSD, Pfizer, Gilead, BioMérieux, Fischer and Paykel, and BioRad. JCR received a grant from Hamilton Medical for an experimental study. Other authors have no competing interest.

Consent for publication

All authors consent to the publication of the manuscript in Intensive Care Medicine, should the article be accepted by the Editor-in-Chief upon completion of the review process.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreitmann, L., Jermoumi, S., Vasseur, M. et al. Relationship between COVID-19 and ICU-acquired colonization and infection related to multidrug-resistant bacteria: a prospective multicenter before-after study. Intensive Care Med 49, 796–807 (2023). https://doi.org/10.1007/s00134-023-07109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-023-07109-5

Keywords

Navigation