[go: up one dir, main page]

Skip to main content
Log in

Robust Frequency Estimation of Multi-sinusoidal Signals Using Orthogonal Matching Pursuit with Weak Derivatives Criterion

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the weak derivatives (WD) criterion is introduced to solve the frequency estimation problem of multi-sinusoidal signals corrupted by noises. The problem is therefore modeled as a new least squares optimization task combined with WD. To overcome the potential basis mismatch effect caused by discretization of the frequency parameters, a modified orthogonal matching pursuit algorithm is proposed to solve the optimization problem by coupling it with a novel multi-grid dictionary training strategy. The proposed algorithm is validated on a set of simulated datasets with white noise and stationary colored noise. The comprehensive simulation studies show that the proposed algorithm can achieve more accurate and robust estimation than state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Brewer, M. Barenco, R. Callard, M. Hubank, J. Stark, Fitting ordinary differential equations to short time course data. Philos. Trans. R. Soc. A 366, 519–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. A.E. Brito, C. Villalobos, S.D. Cabrera, Interior-point methods in l(1) optimal sparse representation algorithms for harmonic retrieval. Optim. Eng. 5, 503–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Cai, K. Zeng, L. Tang, D. Chen, W. Peng, J. Yan, X. Li, Towards adaptive synchronization measurement of large-scale non-stationary non-linear data. Future Gener. Comput. Syst. 43–44, 110–119 (2015)

    Article  Google Scholar 

  4. C. Candan, Analysis and further improvement of fine resolution frequency estimation method from three DFT samples. IEEE Signal Process. Lett. 20, 913–916 (2013)

    Article  Google Scholar 

  5. P. Dash, S. Hasan, A fast recursive algorithm for the estimation of frequency, amplitude, and phase of noisy sinusoid. IEEE Trans. Ind. Electron. 58, 4847–4856 (2011)

    Article  Google Scholar 

  6. S. Djukanovic, An accurate method for frequency estimation of a real sinusoid. IEEE Signal Process. Lett. 23, 915–918 (2016)

    Article  Google Scholar 

  7. M. Geng, H. Liang, J. Wang, Research on methods of higher-order statistics for phase difference detection and frequency estimation, in 2011 4th International Congress on Image and Signal Processing (IEEE 2011), pp. 2189–2193

  8. Y.Z. Guo, L.Z. Guo, S.A. Billings, H.L. Wei, Ultra-orthogonal forward regression algorithms for the identification of non-linear dynamic systems. Neurocomputing 173, 715–723 (2016)

    Article  Google Scholar 

  9. R. Jennrich, Asymptotic properties of the nonlinear least squares estimators. Ann. Math. Stat. 40, 633–643 (1969)

    Article  MATH  Google Scholar 

  10. T. Jin, S. Liu, R. Flesch, Mode identification of low-frequency oscillations in power systems based on fourth-order mixed mean cumulant and improved TLS-ESPRIT algorithm. IET Gener. Transm. Dis. 11, 3737–3748 (2017)

    Article  Google Scholar 

  11. D. Kundu, A. Mitra, Genetic algorithm based robust frequency estimation of sinusoidal signals with stationary errors. Eng. Appl. Artif. Intell. 23, 321–330 (2010)

    Article  Google Scholar 

  12. D. Kundu, S. Nandi, Parameter estimation of chirp signals in presence of stationary noise. Stat. Sin. 18, 187–201 (2008)

    MathSciNet  MATH  Google Scholar 

  13. D. Kundu, S. Nandi, Determination of discrete spectrum in a random field. Stat. Neerl. 57, 258–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Liu, Y. Zhang, T. Shan, R. Tao, Structure-aware Bayesian compressive sensing for frequency-hopping spectrum estimation with missing observations. IEEE Trans. Signal Process. 66, 2153–2166 (2018)

    Article  MathSciNet  Google Scholar 

  15. B. Mamandipoor, R. Dinesh, M. Upamanyu, Frequency estimation for a mixture of sinusoids: A near-optimal sequential approach, in IEEE Global Conference on Signal and Information Processing (IEEE, 2015), pp. 205–209

  16. B. Mamandipoor, D. Ramasamy, U. Madhow, Newtonized orthogonal matching pursuit: frequency estimation over the continuum. IEEE Trans. Signal Process. 64, 5066–5081 (2016)

    Article  MathSciNet  Google Scholar 

  17. U. Orguner, C. Candan, A fine-resolution frequency estimator using an arbitrary number of DFT coefficients. Signal Process. 105, 17–21 (2014)

    Article  Google Scholar 

  18. D. Ramasamy, S. Venkateswaran, U. Madhow, Compressive parameter estimation in AWGN. IEEE Trans. Signal Process. 62, 2012–2027 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Rodriguez, A. Tionbus, R. Teodorescu, M. Liserre, F. Blaabjerg, Flexible active power control of distributed generation systems during grid faults. IEEE Trans. Ind. Electron. 54, 2583–2592 (2007)

    Article  Google Scholar 

  20. S. Sahnoun, E.H. Djermoune, C. Soussen, D. Brie, Sparse multidimensional modal analysis using a multigrid dictionary refinement. EURASIP J. Adv. Signal Process. 12, 1–10 (2012)

    Google Scholar 

  21. M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009)

    Article  Google Scholar 

  22. Z. Shi, F. Fairman, Harmonic retrieval via state space and fourth-order cumulants. IEEE Trans. Signal Process. 42, 1109–1119 (1994)

    Article  Google Scholar 

  23. R. van Vossen, H. Naus, A. Zwamborn, High-resolution harmonic retrieval using the full fourth-order cumulant. Signal Process. 90, 2288–2294 (2010)

    Article  MATH  Google Scholar 

  24. A. Walker, On the estimation of a harmonic component in a time series with stationary independent residuals. Biometrika 58, 21–36 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Wu, Asymptotic theory of the nonlinear least squares estimation. Ann. Stat. 9, 501–513 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Yang, H. Li, Estimation of the number of harmonics using enhanced matrix. IEEE Signal Process. Lett. 14, 137–140 (2007)

    Article  Google Scholar 

  27. P. Yannis, O. Rosec, S. Yannis, Iterative estimation of sinusoidal signal parameters. IEEE Signal Process. Lett. 17, 461–464 (2010)

    Article  Google Scholar 

  28. M. Zhang, L. Fu, H. Li, G. Wang, Harmonic retrieval in complex noises based on wavelet transform. Digit. Signal Process. 18, 534–542 (2008)

    Article  Google Scholar 

  29. Z. Zhou, S. Cheung, F. Chan, Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids, in IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2012), pp. 3537–3540

Download references

Acknowledgements

This work is supported by the open research project of The Hubei Key Laboratory of Intelligent Geo-Information Processing with Grants KLIGIP2016A01 and KLIGIP2016A02, the specific funding for education science research by self-determined research funds of CCNU from the colleges’ basic research and operation of MOE with Grants 230-20205160288 and CCNU15A05022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Zhang, M., Liu, Z. et al. Robust Frequency Estimation of Multi-sinusoidal Signals Using Orthogonal Matching Pursuit with Weak Derivatives Criterion. Circuits Syst Signal Process 38, 1194–1205 (2019). https://doi.org/10.1007/s00034-018-0906-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0906-5

Keywords

Navigation