[go: up one dir, main page]

Skip to main content

Advertisement

Log in

MicroRNA regulation of macrophages in human pathologies

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Macrophages play a crucial role in the innate immune system and contribute to a broad spectrum of pathologies, like in the defence against infectious agents, in inflammation resolution, and wound repair. In the past several years, microRNAs (miRNAs) have been demonstrated to play important roles in immune diseases by regulating macrophage functions. In this review, we will summarize the role of miRNAs in the differentiation of monocytes into macrophages, in the classical and alternative activation of macrophages, and in the regulation of phagocytosis and apoptosis. Notably, miRNAs preferentially target genes related to the cellular cholesterol metabolism, which is of key importance for the inflammatory activation and phagocytic activity of macrophages. miRNAs functionally link various mechanisms involved in macrophage activation and contribute to initiation and resolution of inflammation. miRNAs represent promising diagnostic and therapeutic targets in different conditions, such as infectious diseases, atherosclerosis, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

M-CSF:

Macrophage colony stimulating factor

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

CSF1R:

Macrophage colony stimulating factor receptor

PU.1:

Purine-rich PU-box-binding protein 1

SREBP:

Sterol regulatory element binding protein

PRRs:

Pattern-recognition receptors

TLRs:

Toll-like receptors

IFN-γ:

Interferon gamma

IL:

Interleukin

TNF:

Tumor necrosis factor

ROS:

Reactive oxygen species

NF-κB:

Nuclear factor-κB

LPS:

Lipopolysaccharide

PPARγ:

Peroxisome proliferator-activated receptor gamma

JAK:

Janus kinases

STAT1:

Signal transducers and activators of transcription 1

PI3K:

Phosphatidylinositol 3-kinase

Akt:

Thymoma viral proto-oncogene

HIF-1:

Hypoxia-inducible factor-1

OXPHOS:

Oxidative phosphorylation

miRNAs:

MicroRNAs

UTR:

Untranslated region

C/EBP-α:

CCAAT/enhancer binding protein alpha

ACVR1B:

Activin A receptor type IB

Ets E26:

Avian leukemia oncogene

Bmpr2:

Bone morphogenetic protein receptor type-2

OxLDL:

Oxidized low-density lipoprotein

SOCS1:

Suppressor of cytokine signaling 1

Bcl6:

B cell leukemia/lymphoma 6

FADD:

Fas-associated death domain-containing protein

Ccl2:

Chemokine (C–C motif) ligand 2

Erk:

Mitogen-activated protein kinase 1

APOE:

Apolipoprotein E

TRAF6:

TNF receptor-associated factor 6

IRAK1:

IL-1 receptor-associated kinase 1

IRF5:

Interferon regulatory factor 5

TMEM49:

Transmembrane protein 19

PDCD4:

Programmed cell death 4

PTEN:

Phosphatase and tensin homolog

Egr2:

Early growth response 2

LXR:

Liver X receptor

ABCA1:

ATP binding cassette subfamily A member 1

ABCG1:

ATP binding cassette subfamily G member 1

ACAT1:

Acetyl-CoA acetyltransferase 1

CE:

Cholesteryl ester

References

  1. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623. doi:10.1146/annurev.immunol.17.1.593

    Article  CAS  PubMed  Google Scholar 

  2. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. doi:10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stefater JA, Ren S, Lang RA, Duffield JS (2011) Metchnikoff’s policemen: macrophages in development, homeostasis and regeneration. Trends Mol Med 17:743–752. doi:10.1016/j.molmed.2011.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514. doi:10.3389/fimmu.2014.00514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bain CC, Bravo-Blas A, Scott CL, Gomez Perdiguero E, Geissmann F, Henri S, Malissen B, Osborne LC, Artis D, Mowat AM (2014) Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15:929–937. doi:10.1038/ni.2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551. doi:10.1038/nature13989

    Article  PubMed  CAS  Google Scholar 

  7. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90. doi:10.1126/science.1219179

    Article  CAS  PubMed  Google Scholar 

  8. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. doi:10.1038/nri3671

    Article  CAS  PubMed  Google Scholar 

  9. Liddiard K, Rosas M, Davies LC, Jones SA, Taylor PR (2011) Macrophage heterogeneity and acute inflammation. Eur J Immunol 41:2503–2508. doi:10.1002/eji.201141743

    Article  CAS  PubMed  Google Scholar 

  10. Guilliams M, van de Laar L (2015) A Hitchhiker’s guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system. Front Immunol 6:406. doi:10.3389/fimmu.2015.00406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Neumann C, Sorg C (1980) Sequential expression of functions during macrophage differentiation in murine bone marrow liquid cultures. Eur J Immunol 10:834–840. doi:10.1002/eji.1830101107

    Article  CAS  PubMed  Google Scholar 

  12. Ross JA, Auger MJ (2002) The biology of the macrophage. In: Burke B, Lewis CE (eds) The macrophage. Oxford University Press, New York, pp 3–72

    Google Scholar 

  13. Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER, Nutt SL, Moore J, Sieweke MH (2013) M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497:239–243. doi:10.1038/nature12026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hamilton JA, Achuthan A (2013) Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol 34:81–89. doi:10.1016/j.it.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  15. Davies LC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Brombacher F, Fraser DJ, Allen JE, Jones SA, Taylor PR (2013) Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 4:1886. doi:10.1038/ncomms2877

    Article  PubMed  CAS  Google Scholar 

  16. Zhang DE, Hetherington CJ, Chen HM, Tenen DG (1994) The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 14:373–381. doi:10.1128/MCB.14.1.373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mouchemore KA, Pixley FJ (2012) CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways. Crit Rev Clin Lab Sci 49:49–61. doi:10.3109/10408363.2012.666845

    Article  CAS  PubMed  Google Scholar 

  18. Stanley ER, Chitu V (2014) CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 6:a021857. doi:10.1101/cshperspect.a021857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311. doi:10.4049/jimmunol.177.10.7303

    Article  CAS  PubMed  Google Scholar 

  20. Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H, Schmitz G (2010) Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci USA 107:7817–7822. doi:10.1073/pnas.0912059107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782–787. doi:10.1038/35021228

    Article  CAS  PubMed  Google Scholar 

  22. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811–815. doi:10.1038/44605

    Article  CAS  PubMed  Google Scholar 

  23. Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304:1014–1018. doi:10.1126/science.1096158

    Article  CAS  PubMed  Google Scholar 

  24. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257. doi:10.1038/nature06421

    Article  CAS  PubMed  Google Scholar 

  25. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353. doi:10.1038/ni.3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79:319–326. doi:10.1172/JCI112815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takemura R, Werb Z (1984) Secretory products of macrophages and their physiological functions. Am J Physiol 246:C1–C9

    CAS  PubMed  Google Scholar 

  28. Natarelli L, Schober A (2015) MicroRNAs and the response to injury in atherosclerosis. Hamostaseologie 35:142–150. doi:10.5482/HAMO-14-10-0051

    Article  CAS  PubMed  Google Scholar 

  29. Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK, Roy S (2015) Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol 185:2596–2606. doi:10.1016/j.ajpath.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  30. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069. doi:10.1084/jem.20070075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20. doi:10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. doi:10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sica A, Erreni M, Allavena P, Porta C (2015) Macrophage polarization in pathology. Cell Mol Life Sci 72:4111–4126. doi:10.1007/s00018-015-1995-y

    Article  CAS  PubMed  Google Scholar 

  34. Lichtnekert J, Kawakami T, Parks WC, Duffield JS (2013) Changes in macrophage phenotype as the immune response evolves. Curr Opin Pharmacol 13:555–564. doi:10.1016/j.coph.2013.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hall CJ, Sanderson LE, Crosier KE, Crosier PS (2014) Mitochondrial metabolism, reactive oxygen species, and macrophage function-fishing for insights. J Mol Med (Berl) 92:1119–1128. doi:10.1007/s00109-014-1186-6

    Article  CAS  Google Scholar 

  36. Novak ML, Koh TJ (2013) Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol 183:1352–1363. doi:10.1016/j.ajpath.2013.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761. doi:10.1038/nri3088

    Article  CAS  PubMed  Google Scholar 

  38. Tugal D, Liao X, Jain MK (2013) Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol 33:1135–1144. doi:10.1161/atvbaha.113.301453

    Article  CAS  PubMed  Google Scholar 

  39. Su X, Yu Y, Zhong Y, Giannopoulou EG, Hu X, Liu H, Cross JR, Ratsch G, Rice CM, Ivashkiv LB (2015) Interferon-gamma regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol 16:838–849. doi:10.1038/ni.3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, Ieronymaki E, Androulidaki A, Venihaki M, Margioris AN, Stathopoulos EN, Tsichlis PN, Tsatsanis C (2012) Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci USA 109:9517–9522. doi:10.1073/pnas.1119038109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weichhart T, Hengstschlager M, Linke M (2015) Regulation of innate immune cell function by mTOR. Nat Rev Immunol 15:599–614. doi:10.1038/nri3901

    Article  CAS  PubMed  Google Scholar 

  42. Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R, Herrley E, Zaugg C, Pei H, Geissmann F, Ley K, Hedrick CC (2012) NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 110:416–427. doi:10.1161/circresaha.111.253377

    Article  CAS  PubMed  Google Scholar 

  43. Hamers AA, Vos M, Rassam F, Marinkovic G, Kurakula K, van Gorp PJ, de Winther MP, Gijbels MJ, de Waard V, de Vries CJ (2012) Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ Res 110:428–438. doi:10.1161/circresaha.111.260760

    Article  CAS  PubMed  Google Scholar 

  44. Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, Paruchuri K, Mahabeleshwar GH, Dalmas E, Venteclef N, Flask CA, Kim J, Doreian BW, Lu KQ, Kaestner KH, Hamik A, Clement K, Jain MK (2011) Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest 121:2736–2749. doi:10.1172/jci45444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma N, Lu Y, Zhou G, Liao X, Kapil P, Anand P, Mahabeleshwar GH, Stamler JS, Jain MK (2012) Myeloid Kruppel-like factor 4 deficiency augments atherogenesis in ApoE−/− mice–brief report. Arterioscler Thromb Vasc Biol 32:2836–2838. doi:10.1161/ATVBAHA.112.300471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cardilo-Reis L, Gruber S, Schreier SM, Drechsler M, Papac-Milicevic N, Weber C, Wagner O, Stangl H, Soehnlein O, Binder CJ (2012) Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 4:1072–1086. doi:10.1002/emmm.201201374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Babaev VR, Hebron KE, Wiese CB, Toth CL, Ding L, Zhang Y, May JM, Fazio S, Vickers KC, Linton MF (2014) Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice. J Lipid Res 55:2296–2308. doi:10.1194/jlr.M050633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fernandez-Hernando C, Ackah E, Yu J, Suarez Y, Murata T, Iwakiri Y, Prendergast J, Miao RQ, Birnbaum MJ, Sessa WC (2007) Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab 6:446–457. doi:10.1016/j.cmet.2007.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184. doi:10.1172/JCI29881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeyda M, Stulnig TM (2007) Adipose tissue macrophages. Immunol Lett 112:61–67. doi:10.1016/j.imlet.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  51. McNelis JC, Olefsky JM (2014) Macrophages, immunity, and metabolic disease. Immunity 41:36–48. doi:10.1016/j.immuni.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  52. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. doi:10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Newsholme P, Gordon S, Newsholme EA (1987) Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J 242:631–636. doi:10.1042/bj2420631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38:633–643. doi:10.1016/j.immuni.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, Cascante M, Bosca L (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185:605–614. doi:10.4049/jimmunol.0901698

    Article  CAS  PubMed  Google Scholar 

  56. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480. doi:10.1038/nature09973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hall CJ, Boyle RH, Astin JW, Flores MV, Oehlers SH, Sanderson LE, Ellett F, Lieschke GJ, Crosier KE, Crosier PS (2013) Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation-dependent mitochondrial ROS production. Cell Metab 18:265–278. doi:10.1016/j.cmet.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  58. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. doi:10.1042/bj20081386

    Article  CAS  PubMed  Google Scholar 

  59. James AM, Collins Y, Logan A, Murphy MP (2012) Mitochondrial oxidative stress and the metabolic syndrome. Trends Endocrinol Metab 23:429–434. doi:10.1016/j.tem.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  60. Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3:214–220. doi:10.1038/nrm762

    Article  CAS  PubMed  Google Scholar 

  61. Ghesquiere B, Wong BW, Kuchnio A, Carmeliet P (2014) Metabolism of stromal and immune cells in health and disease. Nature 511:167–176. doi:10.1038/nature13312

    Article  CAS  PubMed  Google Scholar 

  62. Huang SCC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, O’Neil CM, Yan C, Du H, Abumrad NA, Urban JF, Artyomov MN, Pearce EL, Pearce EJ (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15:846–855. doi:10.1038/ni.2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Wagner RA, Greaves DR, Murray PJ, Chawla A (2006) Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 4:13–24. doi:10.1016/j.cmet.2006.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882. doi:10.1016/j.cell.2010.02.029

    Article  CAS  PubMed  Google Scholar 

  65. Penberthy KK, Ravichandran KS (2016) Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 269:44–59. doi:10.1111/imr.12376

    Article  CAS  PubMed  Google Scholar 

  66. Zizzo G, Hilliard BA, Monestier M, Cohen PL (2012) Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 189:3508–3520. doi:10.4049/jimmunol.1200662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898. doi:10.1172/JCI1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chung EY, Liu J, Homma Y, Zhang Y, Brendolan A, Saggese M, Han J, Silverstein R, Selleri L, Ma X (2007) Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 27:952–964. doi:10.1016/j.immuni.2007.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289. doi:10.1038/nri2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Poon IK, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14:166–180. doi:10.1038/nri3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Martinet W (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25:1256–1261. doi:10.1161/01.ATV.0000166517.18801.a7

    Article  CAS  PubMed  Google Scholar 

  72. Erbel C, Tyka M, Helmes CM, Akhavanpoor M, Rupp G, Domschke G, Linden F, Wolf A, Doesch A, Lasitschka F, Katus HA, Gleissner CA (2015) CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+ in vitro and in vivo. Innate Immun 21:255–265. doi:10.1177/1753425914526461

    Article  CAS  PubMed  Google Scholar 

  73. Gleissner CA, Shaked I, Little KM, Ley K (2010) CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol 184:4810–4818. doi:10.4049/jimmunol.0901368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107:737–746. doi:10.1161/CIRCRESAHA.109.215715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W, Krause M, Schworer AM, Wagner U, Muller-Brusselbach S, Muller R (2014) Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer 134:32–42. doi:10.1002/ijc.28335

    Article  PubMed  CAS  Google Scholar 

  76. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288. doi:10.1016/j.immuni.2014.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hume DA (2015) The many alternative faces of macrophage activation. Front Immunol 6:370. doi:10.3389/fimmu.2015.00370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Nilsson R, Bajic VB, Suzuki H, di Bernardo D, Bjorkegren J, Katayama S, Reid JF, Sweet MJ, Gariboldi M, Carninci P, Hayashizaki Y, Hume DA, Tegner J, Ravasi T (2006) Transcriptional network dynamics in macrophage activation. Genomics 88:133–142. doi:10.1016/j.ygeno.2006.03.022

    Article  CAS  PubMed  Google Scholar 

  79. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226. doi:10.1016/j.cell.2008.09.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:846–860. doi:10.1038/nrg3079

    Article  CAS  PubMed  Google Scholar 

  81. Kouno T, de Hoon M, Mar JC, Tomaru Y, Kawano M, Carninci P, Suzuki H, Hayashizaki Y, Shin JW (2013) Temporal dynamics and transcriptional control using single-cell gene expression analysis. Genome Biol 14:R118. doi:10.1186/gb-2013-14-10-r118

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ramsey S, Ozinsky A, Clark A, Smith KD, de Atauri P, Thorsson V, Orrell D, Bolouri H (2006) Transcriptional noise and cellular heterogeneity in mammalian macrophages. Philos Trans R Soc Lond B Biol Sci 361:495–506. doi:10.1098/rstb.2005.1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309:2010–2013. doi:10.1126/science.1105891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524. doi:10.1016/j.cell.2012.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Siciliano V, Garzilli I, Fracassi C, Criscuolo S, Ventre S, di Bernardo D (2013) miRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat Commun 4:2364. doi:10.1038/ncomms3364

    Article  PubMed  CAS  Google Scholar 

  86. Schmiedel JM, Klemm SL, Zheng Y, Sahay A, Bluthgen N, Marks DS, van Oudenaarden A (2015) Gene expression. MicroRNA control of protein expression noise. Science 348:128–132. doi:10.1126/science.aaa1738

    Article  CAS  PubMed  Google Scholar 

  87. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. doi:10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  88. Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q, Tomari Y (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17:17–23. doi:10.1038/nsmb.1733

    Article  CAS  PubMed  Google Scholar 

  89. Wang HW, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K, Doudna JA, Nogales E (2009) Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 16:1148–1153. doi:10.1038/nsmb.1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239. doi:10.1146/annurev-biophys-083012-130404

    Article  CAS  PubMed  Google Scholar 

  91. Kwak PB, Tomari Y (2012) The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol 19:145–151. doi:10.1038/nsmb.2232

    Article  CAS  PubMed  Google Scholar 

  92. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665. doi:10.1016/j.cell.2013.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. doi:10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bosson AD, Zamudio JR, Sharp PA (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 56:347–359. doi:10.1016/j.molcel.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  96. Yuan Y, Liu B, Xie P, Zhang MQ, Li Y, Xie Z, Wang X (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc Natl Acad Sci USA 112:3158–3163. doi:10.1073/pnas.1413896112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. La Rocca G, Olejniczak SH, Gonzalez AJ, Briskin D, Vidigal JA, Spraggon L, DeMatteo RG, Radler MR, Lindsten T, Ventura A, Tuschl T, Leslie CS, Thompson CB (2015) In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc Natl Acad Sci USA 112:767–772. doi:10.1073/pnas.1424217112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, Hsu SH, Ghoshal K, Villen J, Bartel DP (2014) mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56:104–115. doi:10.1016/j.molcel.2014.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wei Y, Zhu M, Corbalan-Campos J, Heyll K, Weber C, Schober A (2015) Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis. Arterioscler Thromb Vasc Biol 35:796–803. doi:10.1161/ATVBAHA.114.304723

    Article  CAS  PubMed  Google Scholar 

  100. Wei Y, Schober A, Weber C (2013) Pathogenic arterial remodeling: the good and bad of microRNAs. Am J Physiol Heart Circ Physiol 304:H1050–H1059. doi:10.1152/ajpheart.00267.2012

    Article  CAS  PubMed  Google Scholar 

  101. Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A (2013) MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? Arterioscler Thromb Vasc Biol 33:449–454. doi:10.1161/ATVBAHA.112.300279

    Article  CAS  PubMed  Google Scholar 

  102. Wei Y, Nazari-Jahantigh M, Chan L, Zhu M, Heyll K, Corbalan-Campos J, Hartmann P, Thiemann A, Weber C, Schober A (2013) The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation 127:1609–1619. doi:10.1161/CIRCULATIONAHA.112.000736

    Article  CAS  PubMed  Google Scholar 

  103. Fordham JB, Naqvi AR, Nares S (2015) Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity. J Leukoc Biol 98:195–207. doi:10.1189/jlb.1A1014-519RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lin HS, Gong JN, Su R, Chen MT, Song L, Shen C, Wang F, Ma YN, Zhao HL, Yu J, Li WW, Huang LX, Xu XH, Zhang JW (2014) miR-199a-5p inhibits monocyte/macrophage differentiation by targeting the activin A type 1B receptor gene and finally reducing C/EBPalpha expression. J Leukoc Biol 96:1023–1035. doi:10.1189/jlb.1A0514-240R

    Article  PubMed  CAS  Google Scholar 

  105. Naqvi AR, Fordham JB, Nares S (2015) miR-24, miR-30b, and miR-142-3p regulate phagocytosis in myeloid inflammatory cells. J Immunol 194:1916–1927. doi:10.4049/jimmunol.1401893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bettencourt P, Marion S, Pires D, Santos LF, Lastrucci C, Carmo N, Blake J, Benes V, Griffiths G, Neyrolles O, Lugo-Villarino G, Anes E (2013) Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Front Cell Infect Microbiol 3:19. doi:10.3389/fcimb.2013.00019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Akhurst RJ, Hata A (2012) Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 11:790–811. doi:10.1038/nrd3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sierra-Filardi E, Puig-Kroger A, Blanco FJ, Nieto C, Bragado R, Palomero MI, Bernabeu C, Vega MA, Corbi AL (2011) Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 117:5092–5101. doi:10.1182/blood-2010-09-306993

    Article  CAS  PubMed  Google Scholar 

  109. Gantier MP, Stunden HJ, McCoy CE, Behlke MA, Wang D, Kaparakis-Liaskos M, Sarvestani ST, Yang YH, Xu D, Corr SC, Morand EF, Williams BR (2012) A miR-19 regulon that controls NF-kappaB signaling. Nucleic Acids Res 40:8048–8058. doi:10.1093/nar/gks521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, Heyll K, Gremse F, Kiessling F, Grommes J, Weber C, Schober A (2012) MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest 122:4190–4202. doi:10.1172/JCI61716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME (2012) Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem 287:21816–21825. doi:10.1074/jbc.M111.327031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cobos Jimenez V, Bradley EJ, Willemsen AM, van Kampen AH, Baas F, Kootstra NA (2014) Next-generation sequencing of microRNAs uncovers expression signatures in polarized macrophages. Physiol Genomics 46:91–103. doi:10.1152/physiolgenomics.00140.2013

    Article  PubMed  CAS  Google Scholar 

  113. Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M, De Palma M (2014) Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8:1432–1446. doi:10.1016/j.celrep.2014.07.035

    Article  CAS  PubMed  Google Scholar 

  114. Njock MS, Cheng HS, Dang LT, Nazari-Jahantigh M, Lau AC, Boudreau E, Roufaiel M, Cybulsky MI, Schober A, Fish JE (2015) Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood 125:3202–3212. doi:10.1182/blood-2014-11-611046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Quinn SR, Mangan NE, Caffrey BE, Gantier MP, Williams BR, Hertzog PJ, McCoy CE, O’Neill LA (2014) The role of Ets2 transcription factor in the induction of microRNA-155 (miR-155) by lipopolysaccharide and its targeting by interleukin-10. J Biol Chem 289:4316–4325. doi:10.1074/jbc.M113.522730

    Article  CAS  PubMed  Google Scholar 

  116. Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, Szabo G (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286:1436–1444. doi:10.1074/jbc.M110.145870

    Article  CAS  PubMed  Google Scholar 

  117. Tian FJ, An LN, Wang GK, Zhu JQ, Li Q, Zhang YY, Zeng A, Zou J, Zhu RF, Han XS, Shen N, Yang HT, Zhao XX, Huang S, Qin YW, Jing Q (2014) Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. Cardiovasc Res 103:100–110. doi:10.1093/cvr/cvu070

    Article  CAS  PubMed  Google Scholar 

  118. Du F, Yu F, Wang Y, Hui Y, Carnevale K, Fu M, Lu H, Fan D (2014) MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 34:759–767. doi:10.1161/atvbaha.113.302701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Malyshev I, Malyshev Y (2015) Current concept and update of the macrophage plasticity concept: intracellular mechanisms of reprogramming and M3 macrophage “switch” phenotype. Biomed Res Int 2015:341308. doi:10.1155/2015/341308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Kutty RK, Nagineni CN, Samuel W, Vijayasarathy C, Hooks JJ, Redmond TM (2010) Inflammatory cytokines regulate microRNA-155 expression in human retinal pigment epithelial cells by activating JAK/STAT pathway. Biochem Biophys Res Commun 402:390–395. doi:10.1016/j.bbrc.2010.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lin CC, Jiang W, Mitra R, Cheng F, Yu H, Zhao Z (2015) Regulation rewiring analysis reveals mutual regulation between STAT1 and miR-155-5p in tumor immunosurveillance in seven major cancers. Sci Rep 5:12063. doi:10.1038/srep12063

    Article  PubMed  PubMed Central  Google Scholar 

  122. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, Margioris AN, Tsichlis PN, Tsatsanis C (2009) The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31:220–231. doi:10.1016/j.immuni.2009.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. He S, Yang L, Li D, Li M (2015) Kruppel-like factor 2-mediated suppression of microRNA-155 reduces the proinflammatory activation of macrophages. PLoS One 10:e0139060. doi:10.1371/journal.pone.0139060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Pankratz F, Bemtgen X, Zeiser R, Leonhardt F, Kreuzaler S, Hilgendorf I, Smolka C, Helbing T, Hoefer I, Esser JS, Kustermann M, Moser M, Bode C, Grundmann S (2015) MicroRNA-155 exerts cell-specific antiangiogenic but proarteriogenic effects during adaptive neovascularization. Circulation 131:1575–1589. doi:10.1161/CIRCULATIONAHA.114.014579

    Article  CAS  PubMed  Google Scholar 

  125. Zhu GF, Yang LX, Guo RW, Liu H, Shi YK, Wang H, Ye JS, Yang ZH, Liang X (2013) miR-155 inhibits oxidized low-density lipoprotein-induced apoptosis of RAW264.7 cells. Mol Cell Biochem 382:253–261. doi:10.1007/s11010-013-1741-4

    Article  CAS  PubMed  Google Scholar 

  126. Koch M, Mollenkopf HJ, Klemm U, Meyer TF (2012) Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proc Natl Acad Sci USA 109:E1153–E1162. doi:10.1073/pnas.1116125109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang S, Li F, Jia S, Zhang K, Jiang W, Shang Y, Chang K, Deng S, Chen M (2015) Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes apoptosis of macrophages via targeting the microRNA155-SOCS1 interaction. Cell Physiol Biochem 35:1276–1288. doi:10.1159/000373950

    Article  CAS  PubMed  Google Scholar 

  128. Lu LF, Gasteiger G, Yu IS, Chaudhry A, Hsin JP, Lu Y, Bos PD, Lin LL, Zawislak CL, Cho S, Sun JC, Leslie CS, Lin SW, Rudensky AY (2015) A single miRNA-mRNA interaction affects the immune response in a context- and cell-type-specific manner. Immunity 43:52–64. doi:10.1016/j.immuni.2015.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL, Baltimore D (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205:585–594. doi:10.1084/jem.20072108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Donners MM, Wolfs IM, Stoger LJ, van der Vorst EP, Pottgens CC, Heymans S, Schroen B, Gijbels MJ, de Winther MP (2012) Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS One 7:e35877. doi:10.1371/journal.pone.0035877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86. doi:10.1126/science.1091903

    Article  CAS  PubMed  Google Scholar 

  132. Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG (2010) MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 11:799–805. doi:10.1038/ni.1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Taïbi F, Metzinger-Le Meuth V, Massy ZA, Metzinger L (2014) miR-223: an inflammatory oncomiR enters the cardiovascular field. Biochim Biophys Acta 1842:1001–1009. doi:10.1016/j.bbadis.2014.03.005

    Article  PubMed  CAS  Google Scholar 

  134. Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, Shah P, Wisler J, Eubank TD, Tridandapani S, Paulaitis ME, Piper MG, Marsh CB (2013) Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood 121:984–995. doi:10.1182/blood-2011-08-374793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, Kawamura A, Nakamura K, Takeuchi T, Tanabe M (2007) An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129:617–631. doi:10.1016/j.cell.2007.02.048

    Article  CAS  PubMed  Google Scholar 

  136. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71. doi:10.1038/nature07242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H, Li H, Wang G, Evans AR, Safe S, Wu C, Zhou B (2012) A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125:2892–2903. doi:10.1161/CIRCULATIONAHA.111.087817

    Article  CAS  PubMed  Google Scholar 

  138. Ying W, Tseng A, Chang RC, Morin A, Brehm T, Triff K, Nair V, Zhuang G, Song H, Kanameni S, Wang H, Golding MC, Bazer FW, Chapkin RS, Safe S, Zhou B (2015) MicroRNA-223 is a crucial mediator of PPARgamma-regulated alternative macrophage activation. J Clin Invest 125:4149–4159. doi:10.1172/JCI81656

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chen Q, Wang H, Liu Y, Song Y, Lai L, Han Q, Cao X, Wang Q (2012) Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3. PLoS One 7:e42971. doi:10.1371/journal.pone.0042971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V (2012) NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol 189:4175–4181. doi:10.4049/jimmunol.1201516

    Article  CAS  PubMed  Google Scholar 

  141. Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey AA, Pich D, McInnes IB, Hammerschmidt W, O’Neill LA, Masters SL (2012) Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J Immunol 189:3795–3799. doi:10.4049/jimmunol.1200312

    Article  CAS  PubMed  Google Scholar 

  142. Liu Y, Wang R, Jiang J, Yang B, Cao Z, Cheng X (2015) miR-223 is upregulated in monocytes from patients with tuberculosis and regulates function of monocyte-derived macrophages. Mol Immunol 67:475–481. doi:10.1016/j.molimm.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  143. Mathsyaraja H, Thies K, Taffany DA, Deighan C, Liu T, Yu L, Fernandez SA, Shapiro C, Otero J, Timmers C, Lustberg MB, Chalmers J, Leone G, Ostrowski MC (2015) CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth. Oncogene 34:3651–3661. doi:10.1038/onc.2014.294

    Article  CAS  PubMed  Google Scholar 

  144. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486. doi:10.1073/pnas.0605298103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vergadi E, Vaporidi K, Theodorakis EE, Doxaki C, Lagoudaki E, Ieronymaki E, Alexaki VI, Helms M, Kondili E, Soennichsen B, Stathopoulos EN, Margioris AN, Georgopoulos D, Tsatsanis C (2014) Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. J Immunol 192:394–406. doi:10.4049/jimmunol.1300959

    Article  CAS  PubMed  Google Scholar 

  146. Li K, Ching D, Luk FS, Raffai RL (2015) Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-kappaB-driven inflammation and atherosclerosis. Circ Res 117:e1–e11. doi:10.1161/CIRCRESAHA.117.305844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nahid MA, Satoh M, Chan EK (2015) Interleukin 1beta-responsive microRNA-146a is critical for the cytokine-induced tolerance and cross-tolerance to toll-like receptor ligands. J Innate Immun 7:428–440. doi:10.1159/000371517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. He Y, Sun X, Huang C, Long XR, Lin X, Zhang L, Lv XW, Li J (2014) MiR-146a regulates IL-6 production in lipopolysaccharide-induced RAW264.7 macrophage cells by inhibiting Notch1. Inflammation 37:71–82. doi:10.1007/s10753-013-9713-0

    Article  CAS  PubMed  Google Scholar 

  149. Monsalve E, Ruiz-Garcia A, Baladron V, Ruiz-Hidalgo MJ, Sanchez-Solana B, Rivero S, Garcia-Ramirez JJ, Rubio A, Laborda J, Diaz-Guerra MJ (2009) Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity. Eur J Immunol 39:2556–2570. doi:10.1002/eji.200838722

    Article  CAS  PubMed  Google Scholar 

  150. Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SH, Osborne BA (2008) Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol 38:174–183. doi:10.1002/eji.200636999

    Article  CAS  PubMed  Google Scholar 

  151. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, Sun G, Tay J, Linsley PS, Baltimore D (2011) miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 208:1189–1201. doi:10.1084/jem.20101823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Morishita Y, Imai T, Yoshizawa H, Watanabe M, Ishibashi K, Muto S, Nagata D (2015) Delivery of microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo. Int J Nanomedicine 10:3475–3488. doi:10.2147/IJN.S82587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jiang W, Ni Q, Tan L, Kong L, Lu Y, Xu X, Kong L (2015) The microRNA-146a/b attenuates acute small-for-size liver graft injury in rats. Liver Int 35:914–924. doi:10.1111/liv.12674

    Article  CAS  PubMed  Google Scholar 

  154. Ribas J, Lupold SE (2010) The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell Cycle 9:923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269. doi:10.1038/nrc1840

    Article  CAS  PubMed  Google Scholar 

  156. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261. doi:10.1073/pnas.0510565103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033. doi:10.1158/0008-5472.can-05-0137

    Article  CAS  PubMed  Google Scholar 

  158. Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:86–90. doi:10.1038/nature09284

    Article  CAS  PubMed  Google Scholar 

  159. Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, Olson EN (2010) Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell 18:282–293. doi:10.1016/j.ccr.2010.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803. doi:10.1038/sj.onc.1210083

    Article  CAS  PubMed  Google Scholar 

  161. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, Johnson DS, Chen Y, O’Neill LA (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11:141–147. doi:10.1038/ni.1828

    Article  CAS  PubMed  Google Scholar 

  162. Caescu CI, Guo X, Tesfa L, Bhagat TD, Verma A, Zheng D, Stanley ER (2015) Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21. Blood 125:e1–e13. doi:10.1182/blood-2014-10-608000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Das A, Ganesh K, Khanna S, Sen CK, Roy S (2014) Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol 192:1120–1129. doi:10.4049/jimmunol.1300613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shang YY, Fang NN, Wang F, Wang H, Wang ZH, Tang MX, Peng J, Zhang Y, Zhang W, Zhong M (2015) MicroRNA-21, induced by high glucose, modulates macrophage apoptosis via programmed cell death 4. Mol Med Rep 12:463–469. doi:10.3892/mmr.2015.3398

    CAS  PubMed  Google Scholar 

  165. Ma X, Kumar M, Choudhury SN, Becker Buscaglia LE, Barker JR, Kanakamedala K, Liu MF, Li Y (2011) Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci USA 108:10144–10149. doi:10.1073/pnas.1103735108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C (2009) MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47:5–14. doi:10.1016/j.yjmcc.2009.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu ZL, Wang H, Liu J, Wang ZX (2013) MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol Cell Biochem 372:35–45. doi:10.1007/s11010-012-1443-3

    Article  CAS  PubMed  Google Scholar 

  168. Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, Chun B, Zhuang J, Zhang C (2010) Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 87:431–439. doi:10.1093/cvr/cvq082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wedeken L, Singh P, Klempnauer KH (2011) Tumor suppressor protein Pdcd4 inhibits translation of p53 mRNA. J Biol Chem 286:42855–42862. doi:10.1074/jbc.M111.269456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liwak U, Thakor N, Jordan LE, Roy R, Lewis SM, Pardo OE, Seckl M, Holcik M (2012) Tumor suppressor PDCD4 represses internal ribosome entry site-mediated translation of antiapoptotic proteins and is regulated by S6 kinase 2. Mol Cell Biol 32:1818–1829. doi:10.1128/mcb.06317-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sahin E, Haubenwallner S, Kuttke M, Kollmann I, Halfmann A, Dohnal AM, Chen L, Cheng P, Hoesel B, Einwallner E, Brunner J, Kral JB, Schrottmaier WC, Thell K, Saferding V, Bluml S, Schabbauer G (2014) Macrophage PTEN regulates expression and secretion of arginase I modulating innate and adaptive immune responses. J Immunol 193:1717–1727. doi:10.4049/jimmunol.1302167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wu C, Xue Y, Wang P, Lin L, Liu Q, Li N, Xu J, Cao X (2014) IFN-gamma primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b. J Immunol 193:3036–3044. doi:10.4049/jimmunol.1302379

    Article  CAS  PubMed  Google Scholar 

  173. Fan X, Wang E, Wang X, Cong X, Chen X (2014) MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol Pathol 96:242–249. doi:10.1016/j.yexmp.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  174. Raitoharju E, Lyytikainen LP, Levula M, Oksala N, Mennander A, Tarkka M, Klopp N, Illig T, Kahonen M, Karhunen PJ, Laaksonen R, Lehtimaki T (2011) miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 219:211–217. doi:10.1016/j.atherosclerosis.2011.07.020

    Article  CAS  PubMed  Google Scholar 

  175. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18:505–516. doi:10.1016/j.tcb.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  176. Lee H, Han S, Kwon CS, Lee D (2016) Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 7:100–113. doi:10.1007/s13238-015-0212-y

    Article  CAS  PubMed  Google Scholar 

  177. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2706. doi:10.1093/nar/gki567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Banerjee S, Xie N, Cui H, Tan Z, Yang S, Icyuz M, Abraham E, Liu G (2013) MicroRNA let-7c regulates macrophage polarization. J Immunol 190:6542–6549. doi:10.4049/jimmunol.1202496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J (2011) Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J 30:1977–1989. doi:10.1038/emboj.2011.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang W, Liu H, Liu W, Liu Y, Xu J (2015) Polycomb-mediated loss of microRNA let-7c determines inflammatory macrophage polarization via PAK1-dependent NF-kappaB pathway. Cell Death Differ 22:287–297. doi:10.1038/cdd.2014.142

    Article  CAS  PubMed  Google Scholar 

  181. Naqvi AR, Fordham JB, Khan A, Nares S (2014) MicroRNAs responsive to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis LPS modulate expression of genes regulating innate immunity in human macrophages. Innate Immun 20:540–551. doi:10.1177/1753425913501914

    Article  PubMed  CAS  Google Scholar 

  182. Murphy AJ, Guyre PM, Pioli PA (2010) Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J Immunol 184:5029–5037. doi:10.4049/jimmunol.0903463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kumar M, Sahu SK, Kumar R, Subuddhi A, Maji RK, Jana K, Gupta P, Raffetseder J, Lerm M, Ghosh Z, van Loo G, Beyaert R, Gupta UD, Kundu M, Basu J (2015) MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-kappaB pathway. Cell Host Microbe 17:345–356. doi:10.1016/j.chom.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  184. Chen XM, Splinter PL, O’Hara SP, LaRusso NF (2007) A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 282:28929–28938. doi:10.1074/jbc.M702633200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sharbati J, Lewin A, Kutz-Lohroff B, Kamal E, Einspanier R, Sharbati S (2011) Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection. PLoS One 6:e20258. doi:10.1371/journal.pone.0020258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Litvak V, Ramsey SA, Rust AG, Zak DE, Kennedy KA, Lampano AE, Nykter M, Shmulevich I, Aderem A (2009) Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol 10:437–443. doi:10.1038/ni.1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Balamurugan K, Sharan S, Klarmann KD, Zhang Y, Coppola V, Summers GH, Roger T, Morrison DK, Keller JR, Sterneck E (2013) FBXW7alpha attenuates inflammatory signalling by downregulating C/EBPdelta and its target gene Tlr4. Nat Commun 4:1662. doi:10.1038/ncomms2677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Hamerman JA, Pottle J, Ni M, He Y, Zhang ZY, Buckner JH (2016) Negative regulation of TLR signaling in myeloid cells-implications for autoimmune diseases. Immunol Rev 269:212–227. doi:10.1111/imr.12381

    Article  CAS  PubMed  Google Scholar 

  189. Chafin CB, Regna NL, Caudell DL, Reilly CM (2014) MicroRNA-let-7a promotes E2F-mediated cell proliferation and NFkappaB activation in vitro. Cell Mol Immunol 11:79–83. doi:10.1038/cmi.2013.51

    Article  CAS  PubMed  Google Scholar 

  190. Sun Y, Sun J, Tomomi T, Nieves E, Mathewson N, Tamaki H, Evers R, Reddy P (2013) PU.1-dependent transcriptional regulation of miR-142 contributes to its hematopoietic cell-specific expression and modulation of IL-6. J Immunol 190:4005–4013. doi:10.4049/jimmunol.1202911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414. doi:10.1016/j.cell.2007.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Shrestha A, Carraro G, El Agha E, Mukhametshina R, Chao CM, Rizvanov A, Barreto G, Bellusci S (2015) Generation and Validation of miR-142 knock out mice. PLoS One 10:e0136913. doi:10.1371/journal.pone.0136913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Kramer NJ, Wang WL, Reyes EY, Kumar B, Chen CC, Ramakrishna C, Cantin EM, Vonderfecht SL, Taganov KD, Chau N, Boldin MP (2015) Altered lymphopoiesis and immunodeficiency in miR-142 null mice. Blood 125:3720–3730. doi:10.1182/blood-2014-10-603951

    Article  CAS  PubMed  Google Scholar 

  194. Lagrange B, Martin RZ, Droin N, Aucagne R, Paggetti J, Largeot A, Itzykson R, Solary E, Delva L, Bastie JN (2013) A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages. Biochim Biophys Acta 1833:1936–1946. doi:10.1016/j.bbamcr.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  195. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR, Singh H (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126:755–766. doi:10.1016/j.cell.2006.06.052

    Article  CAS  PubMed  Google Scholar 

  196. Sun W, Shen W, Yang S, Hu F, Li H, Zhu TH (2010) miR-223 and miR-142 attenuate hematopoietic cell proliferation, and miR-223 positively regulates miR-142 through LMO2 isoforms and CEBP-beta. Cell Res 20:1158–1169. doi:10.1038/cr.2010.134

    Article  PubMed  Google Scholar 

  197. Sonda N, Simonato F, Peranzoni E, Cali B, Bortoluzzi S, Bisognin A, Wang E, Marincola FM, Naldini L, Gentner B, Trautwein C, Sackett SD, Zanovello P, Molon B, Bronte V (2013) miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis. Immunity 38:1236–1249. doi:10.1016/j.immuni.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  198. Sun Y, Varambally S, Maher CA, Cao Q, Chockley P, Toubai T, Malter C, Nieves E, Tawara I, Wang Y, Ward PA, Chinnaiyan A, Reddy P (2011) Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood 117:6172–6183. doi:10.1182/blood-2010-12-325647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Huber R, Pietsch D, Panterodt T, Brand K (2012) Regulation of C/EBPbeta and resulting functions in cells of the monocytic lineage. Cell Signal 24:1287–1296. doi:10.1016/j.cellsig.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  200. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Bronneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Bruning JC (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15:423–430. doi:10.1038/ni.2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chomarat P, Banchereau J, Davoust J, Karolina Palucka A (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1:510–514. doi:10.1038/82763

    Article  CAS  PubMed  Google Scholar 

  202. Thrasher AJ (2002) Wasp in immune-system organization and function. Nat Rev Immunol 2:635–646. doi:10.1038/nri884

    Article  CAS  PubMed  Google Scholar 

  203. Su S, Zhao Q, He C, Huang D, Liu J, Chen F, Chen J, Liao JY, Cui X, Zeng Y, Yao H, Su F, Liu Q, Jiang S, Song E (2015) miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun 6:8523. doi:10.1038/ncomms9523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Schober A, Nazari-Jahantigh M, Weber C (2015) MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol 12:361–374. doi:10.1038/nrcardio.2015.38

    Article  CAS  PubMed  Google Scholar 

  205. Maxfield FR, van Meer G (2010) Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol 22:422–429. doi:10.1016/j.ceb.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13:213–224. doi:10.1038/nrm3312

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16:907–917. doi:10.1038/ni.3253

    Article  CAS  PubMed  Google Scholar 

  208. Kiss RS, Elliott MR, Ma Z, Marcel YL, Ravichandran KS (2006) Apoptotic cells induce a phosphatidylserine-dependent homeostatic response from phagocytes. Curr Biol 16:2252–2258. doi:10.1016/j.cub.2006.09.043

    Article  CAS  PubMed  Google Scholar 

  209. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974. doi:10.1038/nri2214

    Article  CAS  PubMed  Google Scholar 

  210. Fond AM, Lee CS, Schulman IG, Kiss RS, Ravichandran KS (2015) Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J Clin Invest 125:2748–2758. doi:10.1172/jci80300

    Article  PubMed  PubMed Central  Google Scholar 

  211. Yvan-Charvet L, Pagler TA, Seimon TA, Thorp E, Welch CL, Witztum JL, Tabas I, Tall AR (2010) ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ Res 106:1861–1869. doi:10.1161/circresaha.110.217281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ruysschaert JM, Lonez C (2015) Role of lipid microdomains in TLR-mediated signalling. Biochim Biophys Acta 1848:1860–1867. doi:10.1016/j.bbamem.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  213. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50. doi:10.1126/science.1174621

    Article  CAS  PubMed  Google Scholar 

  214. Fessler MB, Parks JS (2011) Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J Immunol 187:1529–1535. doi:10.4049/jimmunol.1100253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Steck TL, Lange Y (2010) Cell cholesterol homeostasis: mediation by active cholesterol. Trends Cell Biol 20:680–687. doi:10.1016/j.tcb.2010.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Plociennikowska A, Hromada-Judycka A, Borzecka K, Kwiatkowska K (2015) Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 72:557–581. doi:10.1007/s00018-014-1762-5

    Article  CAS  PubMed  Google Scholar 

  217. Rub A, Dey R, Jadhav M, Kamat R, Chakkaramakkil S, Majumdar S, Mukhopadhyaya R, Saha B (2009) Cholesterol depletion associated with Leishmania major infection alters macrophage CD40 signalosome composition and effector function. Nat Immunol 10:273–280. doi:10.1038/ni.1705

    Article  CAS  PubMed  Google Scholar 

  218. Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647–1650. doi:10.1126/science.288.5471.1647

    Article  CAS  PubMed  Google Scholar 

  219. Kannan S, Audet A, Huang H, Chen LJ, Wu M (2008) Cholesterol-rich membrane rafts and Lyn are involved in phagocytosis during Pseudomonas aeruginosa infection. J Immunol 180:2396–2408. doi:10.4049/jimmunol.180.4.2396

    Article  CAS  PubMed  Google Scholar 

  220. McGillicuddy FC, de la Llera Moya M, Hinkle CC, Joshi MR, Chiquoine EH, Billheimer JT, Rothblat GH, Reilly MP (2009) Inflammation impairs reverse cholesterol transport in vivo. Circulation 119:1135–1145. doi:10.1161/CIRCULATIONAHA.108.810721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Funk JL, Feingold KR, Moser AH, Grunfeld C (1993) Lipopolysaccharide stimulation of RAW 264.7 macrophages induces lipid accumulation and foam cell formation. Atherosclerosis 98:67–82. doi:10.1016/0021-9150(93)90224-I

    Article  CAS  PubMed  Google Scholar 

  222. Zhu X, Lee JY, Timmins JM, Brown JM, Boudyguina E, Mulya A, Gebre AK, Willingham MC, Hiltbold EM, Mishra N, Maeda N, Parks JS (2008) Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J Biol Chem 283:22930–22941. doi:10.1074/jbc.M801408200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhu X, Owen JS, Wilson MD, Li H, Griffiths GL, Thomas MJ, Hiltbold EM, Fessler MB, Parks JS (2010) Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res 51:3196–3206. doi:10.1194/jlr.M006486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Koseki M, Hirano K, Masuda D, Ikegami C, Tanaka M, Ota A, Sandoval JC, Nakagawa-Toyama Y, Sato SB, Kobayashi T, Shimada Y, Ohno-Iwashita Y, Matsuura F, Shimomura I, Yamashita S (2007) Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-alpha secretion in Abca1-deficient macrophages. J Lipid Res 48:299–306. doi:10.1194/jlr.M600428-JLR200

    Article  CAS  PubMed  Google Scholar 

  225. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:781–792. doi:10.1038/ncb1035

    Article  CAS  PubMed  Google Scholar 

  226. Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714. doi:10.1146/annurev-biochem-061009-102430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Melo RC, D’Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF (2011) Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J Histochem Cytochem 59:540–556. doi:10.1369/0022155411404073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, Raetz CR, Wang EW, Kelly SL, Sullards MC, Murphy RC, Merrill AH Jr, Brown HA, Dennis EA, Li AC, Ley K, Tsimikas S, Fahy E, Subramaniam S, Quehenberger O, Russell DW, Glass CK (2012) Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151:138–152. doi:10.1016/j.cell.2012.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang Y, Li Q, Rao E, Sun Y, Grossmann ME, Morris RJ, Cleary MP, Li B (2015) Epidermal fatty acid binding protein promotes skin inflammation induced by high-fat diet. Immunity 42:953–964. doi:10.1016/j.immuni.2015.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Miller YI, Choi SH, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, Boullier A, Gonen A, Diehl CJ, Que X, Montano E, Shaw PX, Tsimikas S, Binder CJ, Witztum JL (2011) Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res 108:235–248. doi:10.1161/circresaha.110.223875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Azzam KM, Fessler MB (2012) Crosstalk between reverse cholesterol transport and innate immunity. Trends Endocrinol Metab 23:169–178. doi:10.1016/j.tem.2012.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, Li Y, Wang JL, Liu XY, Peng J, Chen K, He PP, Lv YC, Ouyang XP, Yao F, Tang DP, Cayabyab FS, Zhang DW, Zheng XL, Tian GP, Tang CK (2014) MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis 234:54–64. doi:10.1016/j.atherosclerosis.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  233. Sala F, Aranda JF, Rotllan N, Ramirez CM, Aryal B, Elia L, Condorelli G, Catapano AL, Fernandez-Hernando C, Norata GD (2014) MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr−/− mice. Thromb Haemost 112:796–802. doi:10.1160/th13-11-0905

    Article  PubMed  PubMed Central  Google Scholar 

  234. Ramirez CM, Rotllan N, Vlassov AV, Davalos A, Li M, Goedeke L, Aranda JF, Cirera-Salinas D, Araldi E, Salerno A, Wanschel A, Zavadil J, Castrillo A, Kim J, Suarez Y, Fernandez-Hernando C (2013) Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res 112:1592–1601. doi:10.1161/circresaha.112.300626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328:1566–1569. doi:10.1126/science.1189123

    Article  CAS  PubMed  Google Scholar 

  236. Lv YC, Tang YY, Peng J, Zhao GJ, Yang J, Yao F, Ouyang XP, He PP, Xie W, Tan YL, Zhang M, Liu D, Tang DP, Cayabyab FS, Zheng XL, Zhang DW, Tian GP, Tang CK (2014) MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis 236:215–226. doi:10.1016/j.atherosclerosis.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  237. DiMarco DM, Fernandez ML (2015) The regulation of reverse cholesterol transport and cellular cholesterol homeostasis by microRNAs. Biology 4:494–511. doi:10.3390/biology4030494

    Article  PubMed  PubMed Central  Google Scholar 

  238. Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, Peterson KJ (2015) A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49:213–242. doi:10.1146/annurev-genet-120213-092023

    Article  CAS  PubMed  Google Scholar 

  239. Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, Kinoshita M, Kuwabara Y, Marusawa H, Iwanaga Y, Hasegawa K, Yokode M, Kimura T, Kita T (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci USA 107:17321–17326. doi:10.1073/pnas.1008499107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernandez-Hernando C (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328:1570–1573. doi:10.1126/science.1189862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Horie T, Baba O, Kuwabara Y, Chujo Y, Watanabe S, Kinoshita M, Horiguchi M, Nakamura T, Chonabayashi K, Hishizawa M, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K (2012) MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE−/− mice. J Am Heart Assoc 1:e003376. doi:10.1161/jaha.112.003376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Karunakaran D, Thrush AB, Nguyen MA, Richards L, Geoffrion M, Singaravelu R, Ramphos E, Shangari P, Ouimet M, Pezacki JP, Moore KJ, Perisic L, Maegdefessel L, Hedin U, Harper ME, Rayner KJ (2015) Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ Res 117:266–278. doi:10.1161/circresaha.117.305624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usami S, Izuhara M, Nakazeki F, Ide Y, Koyama S, Sowa N, Yahagi N, Shimano H, Nakamura T, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K (2014) MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo. Sci Rep 4:5312. doi:10.1038/srep05312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131. doi:10.1172/jci15593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Jeon TI, Osborne TF (2012) SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 23:65–72. doi:10.1016/j.tem.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  246. Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usami S, Izuhara M, Sowa N, Yahagi N, Shimano H, Matsumura S, Inoue K, Marusawa H, Nakamura T, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K (2013) MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun 4:2883. doi:10.1038/ncomms3883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Zhao GJ, Tang SL, Lv YC, Ouyang XP, He PP, Yao F, Chen WJ, Lu Q, Tang YY, Zhang M, Fu Y, Zhang DW, Yin K, Tang CK (2013) Antagonism of betulinic acid on LPS-mediated inhibition of ABCA1 and cholesterol efflux through inhibiting nuclear factor-kappaB signaling pathway and miR-33 expression. PLoS One 8:e74782. doi:10.1371/journal.pone.0074782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, Rinehold K, van Solingen C, Fullerton MD, Cecchini K, Rayner KJ, Steinberg GR, Zamore PD, Fisher EA, Loke P, Moore KJ (2015) MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest 125:4334–4348. doi:10.1172/JCI81676

    Article  PubMed  PubMed Central  Google Scholar 

  249. Ho PC, Chang KC, Chuang YS, Wei LN (2011) Cholesterol regulation of receptor-interacting protein 140 via microRNA-33 in inflammatory cytokine production. Faseb J 25:1758–1766. doi:10.1096/fj.10-179267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Sene A, Khan AA, Cox D, Nakamura RE, Santeford A, Kim BM, Sidhu R, Onken MD, Harbour JW, Hagbi-Levi S, Chowers I, Edwards PA, Baldan A, Parks JS, Ory DS, Apte RS (2013) Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab 17:549–561. doi:10.1016/j.cmet.2013.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614. doi:10.1038/cdd.2013.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Akhtar S, Hartmann P, Karshovska E, Rinderknecht FA, Subramanian P, Gremse F, Grommes J, Jacobs M, Kiessling F, Weber C, Steffens S, Schober A (2015) Endothelial hypoxia-inducible factor-1alpha promotes atherosclerosis and monocyte recruitment by upregulating microRNA-19a. Hypertension 66:1220–1226. doi:10.1161/HYPERTENSIONAHA.115.05886

    CAS  PubMed  Google Scholar 

  253. Jennewein C, von Knethen A, Schmid T, Brune B (2010) MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem 285:11846–11853. doi:10.1074/jbc.M109.066399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Xie N, Cui H, Banerjee S, Tan Z, Salomao R, Fu M, Abraham E, Thannickal VJ, Liu G (2014) miR-27a regulates inflammatory response of macrophages by targeting IL-10. J Immunol 193:327–334. doi:10.4049/jimmunol.1400203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ma S, Liu M, Xu Z, Li Y, Guo H, Ge Y, Liu Y, Zheng D, Shi J (2015) A double feedback loop mediated by microRNA-23a/27a/24-2 regulates M1 versus M2 macrophage polarization and thus regulates cancer progression. Oncotarget. doi:10.18632/oncotarget.6284 (Epub ahead of print)

    Google Scholar 

  256. Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA (2012) The role of tristetraprolin in cancer and inflammation. Front Biosci (Landmark Ed) 17:174–188. doi:10.2741/3920

    Article  CAS  Google Scholar 

  257. Hu YW, Hu YR, Zhao JY, Li SF, Ma X, Wu SG, Lu JB, Qiu YR, Sha YH, Wang YC, Gao JJ, Zheng L, Wang Q (2014) An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS One 9:e94997. doi:10.1371/journal.pone.0094997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Meiler S, Baumer Y, Toulmin E, Seng K, Boisvert WA (2015) MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler Thromb Vasc Biol 35:323–331. doi:10.1161/atvbaha.114.304878

    Article  CAS  PubMed  Google Scholar 

  259. Gao Z, Zhu X, Dou Y (2015) The miR-302/367 cluster: a comprehensive update on its evolution and functions. Open Biol 5:150138. doi:10.1098/rsob.150138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, Khatsenko OG, Kaimal V, Lees CJ, Fernandez-Hernando C, Fisher EA, Temel RE, Moore KJ (2011) Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478:404–407. doi:10.1038/nature10486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694. doi:10.1056/NEJMoa1209026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.S. acknowledges support from the Deutsche Forschungsgemeinschaft (SFB 1123-B4), the German Center for Cardiovascular Research, and the German Federal Ministry of Education and Research (Grant number 01KU1213A). A.S. and Y.W. acknowledge support from Else Kröner-Fresenius-Stiftung (Grant number 2014_A219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schober.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Schober, A. MicroRNA regulation of macrophages in human pathologies. Cell. Mol. Life Sci. 73, 3473–3495 (2016). https://doi.org/10.1007/s00018-016-2254-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2254-6

Keywords

Navigation