[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Blockade of acid-sensing ion channels protects articular chondrocytes from acid-induced apoptotic injury

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Acid-sensing ion channels (ASICs) are members of the degenerin/epithelial sodium channel (DEG/ENaC) protein superfamily and play a critical role in acid-induced cell injury. In this study, we examined whether drugs such as amiloride that block ASICs could attenuate acid-induced apoptotic injury to articular chondrocytes.

Methods

Articular chondrocytes were isolated from Sprague–Dawley rats, and their phenotype was determined by toluidine blue and immunocytochemical staining. Articular chondrocyte viability assay was performed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). Apoptosis of chondrocytes was observed by the terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling method as well as propidium iodide labeling methods. Intracellular calcium ([Ca2+]i) was analyzed by a Ca2+-imaging method. In addition, the expression levels of calpain and calcineurin in articular chondrocytes were examined by real-time PCR and immunocytochemical staining. The activity of caspase-3 was evaluated by spectrophotometric assays.

Results

Positive staining for glycosaminoglycan and collagen II was seen in articular chondrocytes. Blocking acid-sensing ion channels significantly decreased the cell death percentage and increased cell viability following acid exposure. After pretreated with amiloride, acid-induced [Ca2+]i rises were reduced. Amiloride also inhibited calpain and calcineurin expression levels in acid-induced chondrocytes, and inhibited caspase-3 activity.

Conclusion

The data presented in this study provided some experimental evidence that blocking ASICs could protect acid-induced apoptotic injury to chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Razaq S, Wilkins RJ, Urban JP. The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Eur Spine J. 2003;12:341–9.

    Article  PubMed  Google Scholar 

  2. Geborek P, Saxne T, Pettersson H, Wollheim FA. Synovial fluid acidosis correlates with radiological joint destruction in rheumatoid arthritis knee joints. J Rheumatol. 1989;16:468–72.

    PubMed  CAS  Google Scholar 

  3. Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci. 2006;29:578–86.

    Article  PubMed  CAS  Google Scholar 

  4. Bianchi L, Driscoll M. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron. 2002;34:337–40.

    Article  PubMed  CAS  Google Scholar 

  5. Krishtal O. The ASICs: signaling molecules? Modulators? Trends Neurosci. 2003;26:477–83.

    Article  PubMed  CAS  Google Scholar 

  6. Lingueglia E. Acid-sensing ion channels in sensory perception. J Biol Chem. 2007;282:17325–9.

    Article  PubMed  CAS  Google Scholar 

  7. Waldmann R, Lazdunski M. H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol. 1998;8:418–24.

    Article  PubMed  CAS  Google Scholar 

  8. Yuan FL, Chen FH, Lu WG, Li X, Wu FR, Li JP, et al. Acid-sensing ion channel 1a mediates acid-induced increases in intracellular calcium in rat articular chondrocytes. Mol Cell Biochem. 2010; 340:153–9.

    Google Scholar 

  9. Trump BF, Berezesky IK. The role of cytosolic Ca2+ in cell injury, necrosis and apoptosis. Curr Opin Cell Biol. 1992;4:227–32.

    Article  PubMed  CAS  Google Scholar 

  10. Asada S, Fukuda K, Nishisaka F, Matsukawa M, Hamanisi C. Hydrogen peroxide induces apoptosis of chondrocytes, involvement of calcium ion and extracellular signal-regulated protein kinase. Inflamm Res. 2001;50:19–23.

    Article  PubMed  CAS  Google Scholar 

  11. Weng XC, Zheng JQ, Li J, Xiao WB. Underlying mechanism of ASIC1a involved in acidosis-induced cytotoxicity in rat C6 glioma cells. Acta Pharmacol Sin. 2007;28:1731–6.

    Article  PubMed  CAS  Google Scholar 

  12. Yuan FL, Chen FH, Lu WG, Li X, Li JP, Li CW, et al. Inhibition of acid-sensing ion channels in articular chondrocytes by amiloride attenuates articular cartilage destruction in rats with adjuvant arthritis. Inflamm Res. 2010; 59:939–47.

    Google Scholar 

  13. Weng XC, Zheng JQ, Jin QE, Ma XY. Inhibition of acid-induced apoptosis by targeting ASIC1a mRNA with short hairpin RNA. Acta Pharmacol Sin. 2007;28:1621–7.

    Article  PubMed  CAS  Google Scholar 

  14. Lopez-Armada MJ, Carames B, Lires-Dean M, Cillero-Pastor B, Ruiz-Romero C, Galdo F, et al. Cytokines, tumor necrosis factor-alpha and interleukin-1beta, differentially regulate apoptosis in osteoarthritis cultured human chondrocytes. Osteoarthr Cartil. 2006;14:660–9.

    Article  PubMed  CAS  Google Scholar 

  15. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.

    Article  PubMed  CAS  Google Scholar 

  16. Xu TL, Duan B. Calcium-permeable acid-sensing ion channel in nociceptive plasticity: a new target for pain control. Prog Neurobiol. 2009;87:171–80.

    Article  PubMed  CAS  Google Scholar 

  17. Coryell MW, Wunsch AM, Haenfler JM, Allen JE, Schnizler M, Ziemann AE, et al. Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior. J Neurosci. 2009;29:5381–8.

    Article  PubMed  CAS  Google Scholar 

  18. Yen YT, Tu PH, Chen CJ, Lin YW, Hsieh ST, Chen CC. Role of acid-sensing ion channel 3 in sub-acute-phase inflammation. Mol Pain. 2009;5:1.

    Article  PubMed  Google Scholar 

  19. Ikeuchi M, Kolker SJ, Sluka KA. Acid-sensing ion channel 3 expression in mouse knee joint afferents and effects of carrageenan-induced arthritis. J Pain. 2009;10:336–42.

    Article  PubMed  CAS  Google Scholar 

  20. Jiang S, Chow SC, Nicotera P, Orrenius S. Intracellular Ca2+ signals activate apoptosis in thymocytes: studies using the Ca(2+)-ATPase inhibitor thapsigargin. Exp Cell Res. 1994;212:84–92.

    Article  PubMed  CAS  Google Scholar 

  21. Chattopadhyay P, Chaudhury P, Wahi AK. Ca2+ concentrations are key determinants of ischemia-reperfusion-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. Appl Biochem Biotechnol. 2010; 160:1968–77.

    Google Scholar 

  22. Pu Y, Luo KQ, Chang DC. A Ca2+ signal is found upstream of cytochrome c release during apoptosis in HeLa cells. Biochem Biophys Res Commun. 2002;299:762–9.

    Article  PubMed  CAS  Google Scholar 

  23. Liao XD, Tang AH, Chen Q, Jin HJ, Wu CH, Chen LY, et al. Role of Ca2+ signaling in initiation of stretch-induced apoptosis in neonatal heart cells. Biochem Biophys Res Commun. 2003;310:405–11.

    Article  PubMed  CAS  Google Scholar 

  24. Wang W, Xu J, Kirsch T. Annexin-mediated Ca2+ influx regulates growth plate chondrocyte maturation and apoptosis. J Biol Chem. 2003;278:3762–9.

    Article  PubMed  CAS  Google Scholar 

  25. Uchino H, Kuroda Y, Morota S, Hirabayashi G, Ishii N, Shibasaki F, et al. Probing the molecular mechanisms of neuronal degeneration: importance of mitochondrial dysfunction and calcineurin activation. J Anesth. 2008;22:253–62.

    Article  PubMed  Google Scholar 

  26. Diedrichs H, Hagemeister J, Chi M, Boelck B, Muller-Ehmsen J, Schneider CA. Activation of the calcineurin/NFAT signalling cascade starts early in human hypertrophic myocardium. J Int Med Res. 2007;35:803–18.

    PubMed  CAS  Google Scholar 

  27. Minami SB, Yamashita D, Schacht J, Miller JM. Calcineurin activation contributes to noise-induced hearing loss. J Neurosci Res. 2004;78:383–92.

    Article  PubMed  CAS  Google Scholar 

  28. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science. 1999;284:339–43.

    Article  PubMed  CAS  Google Scholar 

  29. Mano A, Tatsumi T, Shiraishi J, Keira N, Nomura T, Takeda M, et al. Aldosterone directly induces myocyte apoptosis through calcineurin-dependent pathways. Circulation. 2004;110:317–23.

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Li Y, Feng Q, Arnold M, Peng T. Calpain activation contributes to hyperglycaemia-induced apoptosis in cardiomyocytes. Cardiovasc Res. 2009;84:100–10.

    Article  PubMed  CAS  Google Scholar 

  31. Lee WK, Torchalski B, Thevenod F. Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubule cells. Am J Physiol Cell Physiol. 2007;293:C839–47.

    Article  PubMed  CAS  Google Scholar 

  32. Samantaray S, Ray SK, Banik NL. Calpain as a potential therapeutic target in Parkinson’s disease. CNS Neurol Disord Drug Targets. 2008;7:305–12.

    Article  PubMed  CAS  Google Scholar 

  33. Chaitanya GV, Babu PP. Activation of calpain, cathepsin-b and caspase-3 during transient focal cerebral ischemia in rat model. Neurochem Res. 2008;33:2178–86.

    Article  PubMed  CAS  Google Scholar 

  34. Yamamoto S, Shimizu K, Shimizu K, Suzuki K, Nakagawa Y, Yamamuro T. Calcium-dependent cysteine proteinase (calpain) in human arthritic synovial joints. Arthr Rheum. 1992;35:1309–17.

    CAS  Google Scholar 

  35. Morita M, Banno Y, Dohjima T, Nozawa S, Fushimi K, Fan DG, et al. Mu-calpain is involved in the regulation of TNF-alpha-induced matrix metalloproteinase-3 release in a rheumatoid synovial cell line. Biochem Biophys Res Commun. 2006;343:937–42.

    Article  PubMed  CAS  Google Scholar 

  36. Wu HY, Tomizawa K, Oda Y, Wei FY, Lu YF, Matsushita M, et al. Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. J Biol Chem. 2004;279:4929–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the China National Science Foundation Grants No. 30873080 and No. 30901526.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Hu or Fei-Hu Chen.

Additional information

Responsible Editor: John Di Battista.

W. Hu, F.-L. Yuan are the authors contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Chen, FH., Yuan, FL. et al. Blockade of acid-sensing ion channels protects articular chondrocytes from acid-induced apoptotic injury. Inflamm. Res. 61, 327–335 (2012). https://doi.org/10.1007/s00011-011-0414-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0414-6

Keywords

Navigation