[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Topology Representing Networks for the Visualization of Manifolds

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

In practical data mining tasks, high-dimensional data has to be analyzed. In most of the cases it is very informative to map and visualize the hidden structure of a complex data set in a low-dimensional space. In this paper a new class of mapping algorithms is defined. These algorithms combine topology representing networks and different nonlinear mapping algorithms. While the former methods aim to quantify the data and disclose the real structure of the objects, the nonlinear mapping algorithms are able to visualize the quantized data in the low-dimensional vector space. In this paper, techniques based on these methods are gathered and the results of a detailed analysis performed on them are shown. The primary aim of this analysis is to examine the preservation of distances and neighborhood relations of the objects. Preservation of neighborhood relations was analyzed both in local and global environments. To evaluate the main properties of the examined methods we show the outcome of the analysis based both on synthetic and real benchmark examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abonyi, J., Roubos, J.A., Szeifert, F.: Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. Int. J. Approx. Reason. 32(1) 1–21 (2003)

    Article  MATH  Google Scholar 

  2. Bernstein, M., de Silva, V., Langford, J.C., Tenenbaum, J.B.: Graph approximations to geodesics on embedded manifolds. Techn. Rep., Stanford Univ. (2000)

  3. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer Series in Statistics. Springer, New York (1997)

    MATH  Google Scholar 

  4. Comon, P.: Independent component analysis: a new concept? Signal Process. 36(3), 287–317 (1994)

    Article  MATH  Google Scholar 

  5. Demartines, P., Herault, J.: Curvilinear component analysis: a selforganizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Netw. 8(1), 148–154 (1997)

    Article  Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  7. Estévez, P.A., Figueroa, C.J.: Online data visualization using the neural gas network. Neural Netw. 19(6), 923–934 (2006)

    Article  MATH  Google Scholar 

  8. Estévez, P.A., Chong, A.M., Held, C.M., Perez, C.A.: Nonlinear projection using geodesic distances and the neural gas network. ICANN2006 LNCS 4131, 464–473 (2006)

    Google Scholar 

  9. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)

    Google Scholar 

  10. Fryback, D.G., Stout, N.K., Rosenberg, M.A., Trentham-Dietz, A., Kuruchittham, V., Remington, P.L.: Chapter 7: the Wisconsin breast cancer epidemiology simulation model. JNCI Monogr. 36, 37–47 (2006)

    Google Scholar 

  11. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  12. Hoteling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24 (1933) 417–441

    Article  Google Scholar 

  13. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1996)

    Google Scholar 

  14. Kaski, S., Nikkilä, J., Oja, M., Venna, J., Törönen, P., Castrén, E.: Trustworthiness and metrics in visualizing similarity of gene expression. BMC Bioinformatics 4(48), (2003). http://www.biomedcentral.com/1471-2105/4/48

  15. Kohonen, T.: Self-organising Maps (2nd edn). Springer, Berlin (1995)

    Google Scholar 

  16. Kruskal, J.B.: Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychometrika 29, 1–29 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A robust nonlinear projection method. In: Verleysen, M. (ed.) Proceedings of ESANNŠ2000, 8th European Symposium on Artificial Neural Networks, pp. 13–20. Bruges (2000)

  18. Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. SIAM News 23(5), 1–18 (1990)

    Google Scholar 

  19. Martinetz, T.M., Schulten, K.J.: A neural-gas network learns topologies. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 397–402. Elsevier, Amsterdam (1991)

    Google Scholar 

  20. Martinetz, T.M., Shulten, K.J.: Topology representing networks. Neural Netw. 7(3), 507–522

  21. Muhammed, H.H.: Unsupervised fuzzy clustering using weighted incremental neural networks. Int. J. Neural Syst. 14(6), 355–371 (2004)

    Article  Google Scholar 

  22. Sammon, J.W.: A non-linear mapping for data structure analysis. IEEE Trans. Comput. C18(5), 401–409 (1969)

    Article  Google Scholar 

  23. Si, J., Lin, S., Vuong, M.-A.: Dynamic topology representing networks. Neural Netw. 13, 617–627 (2000)

    Article  Google Scholar 

  24. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  25. Vathy-Fogarassy, A., Werner-Stark, A., Gal, B., Abonyi, J.: Visualization of topology representing networks. In: Lecture Notes in Computer Science: Intelligent Data Engineering and Automated Learning - IDEAL 2007, vol. 4881/2007, pp. 557–566. Springer, Berlin/Heidelberg (2007)

    Chapter  Google Scholar 

  26. Vathy-Fogarassy, A., Kiss, A., Abonyi, J.: Topology representing network map–a new tool for visualization of high-dimensional data. LNCS Trans. Comput. Sci. I 4750/2008, 61–84 (2008)

    Article  Google Scholar 

  27. Venna, J., Kaski, S.: Local multidimensional scaling. Neural Netw. 19, 889–899 (2006)

    Article  MATH  Google Scholar 

  28. Yin, H.: ViSOM–a novel method for multivariate data projection and structure visualisation. IEEE Trans. Neural Netw. 13, 237–243 (2002)

    Article  Google Scholar 

  29. Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3(1), 19–22 (1938)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Vathy-Fogarassy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vathy-Fogarassy, A., Werner-Stark, A. & Abonyi, J. Topology Representing Networks for the Visualization of Manifolds. J Math Model Algor 7, 351–370 (2008). https://doi.org/10.1007/s10852-008-9092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-008-9092-y

Keywords