[go: up one dir, main page]

Skip to main content
Log in

Semilinear Mixed Problems on Hilbert Complexes and Their Numerical Approximation

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Arnold, Falk, and Winther recently showed (Bull. Am. Math. Soc. 47:281–354, 2010) that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article (arXiv:1005.4455), we extended the Arnold–Falk–Winther framework by analyzing variational crimes (à la Strang) on Hilbert complexes. In particular, this gave a treatment of finite element exterior calculus on manifolds, generalizing techniques from surface finite element methods and recovering earlier a priori estimates for the Laplace–Beltrami operator on 2- and 3-surfaces, due to Dziuk (Lecture Notes in Math., vol. 1357:142–155, 1988) and later Demlow (SIAM J. Numer. Anal. 47:805–827, 2009), as special cases. In the present article, we extend the Hilbert complex framework in a second distinct direction: to the study of semilinear mixed problems. We do this, first, by introducing an operator-theoretic reformulation of the linear mixed problem, so that the semilinear problem can be expressed as an abstract Hammerstein equation. This allows us to obtain, for semilinear problems, a priori solution estimates and error estimates that reduce to the Arnold–Falk–Winther results in the linear case. We also consider the impact of variational crimes, extending the results of our previous article to these semilinear problems. As an immediate application, this new framework allows for mixed finite element methods to be applied to semilinear problems on surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Amann, Ein Existenz- und Eindeutigkeitssatz für die Hammersteinsche Gleichung in Banachräumen, Math. Z. 111, 175–190 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Amann, Zum Galerkin-Verfahren für die Hammersteinsche Gleichung, Arch. Ration. Mech. Anal. 35, 114–121 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  3. D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15, 1–155 (2006). doi:10.1017/S0962492906210018.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull., New Ser., Am. Math. Soc. 47(2), 281–354 (2010). doi:10.1090/S0273-0979-10-01278-4.

    Article  MathSciNet  MATH  Google Scholar 

  5. R.E. Bank, M. Holst, R. Szypowski, Y. Zhu, Finite element error estimates for critical exponent semilinear problems without angle conditions. arXiv:1108.3661 [math.NA] (2011).

  6. A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEE Proc., A Sci. Meas. Technol. 135(8), 493–500 (1988).

    Google Scholar 

  7. F.E. Browder, The solvability of non-linear functional equations, Duke Math. J. 30, 557–566 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  8. F.E. Browder, C.P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Am. Math. Soc. 75, 1347–1353 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Brüning, M. Lesch, Hilbert complexes, J. Funct. Anal. 108(1), 88–132 (1992). doi:10.1016/0022-1236(92)90147-B.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Chen, M.J. Holst, J. Xu, The finite element approximation of the nonlinear Poisson–Boltzmann equation, SIAM J. Numer. Anal. 45(6), 2298–2320 (2007). doi:10.1137/060675514.

    Article  MathSciNet  MATH  Google Scholar 

  11. S.H. Christiansen, Résolution des équations intégrales pour la diffraction d’ondes acoustiques et électromagnétiques: Stabilisation d’algorithmes itératifs et aspects de l’analyse numérique. Ph.D. thesis, École Polytechnique (2002). http://tel.archives-ouvertes.fr/tel-00004520/.

  12. K. Deckelnick, G. Dziuk, Convergence of a finite element method for non-parametric mean curvature flow, Numer. Math. 72(2), 197–222 (1995). doi:10.1007/s002110050166.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Deckelnick, G. Dziuk, Numerical approximation of mean curvature flow of graphs and level sets, in Mathematical Aspects of Evolving Interfaces (Funchal, 2000), Lecture Notes in Math., vol. 1812 (Springer, Berlin, 2003), pp. 53–87.

    Chapter  Google Scholar 

  14. K. Deckelnick, G. Dziuk, C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numer. 14, 139–232 (2005). doi:10.1017/S0962492904000224.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal. 47(2), 805–827 (2009). doi:10.1137/070708135.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Demlow, G. Dziuk, An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45(1), 421–442 (2007) (electronic). doi:10.1137/050642873.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial Differential Equations and Calculus of Variations. Lecture Notes in Math., vol. 1357 (Springer, Berlin, 1988), pp. 142–155. doi:10.1007/BFb0082865.

    Chapter  Google Scholar 

  18. G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math. 58(6), 603–611 (1991). doi:10.1007/BF01385643.

    MathSciNet  MATH  Google Scholar 

  19. G. Dziuk, C.M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal. 27(2), 262–292 (2007). doi:10.1093/imanum/drl023.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Dziuk, J.E. Hutchinson, Finite element approximations to surfaces of prescribed variable mean curvature, Numer. Math. 102(4), 611–648 (2006). doi:10.1007/s00211-005-0649-7.

    Article  MathSciNet  MATH  Google Scholar 

  21. P.W. Gross, P.R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach. Mathematical Sciences Research Institute Publications, vol. 48 (Cambridge University Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  22. M. Holst, Adaptive numerical treatment of elliptic systems on manifolds, Adv. Comput. Math. 15(1–4), 139–191 (2001). doi:10.1023/A:1014246117321.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Holst, G. Nagy, G. Tsogtgerel, Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions, Commun. Math. Phys. 288, 547–613 (2009). doi:10.1007/s00220-009-0743-2.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Holst, A. Stern, Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. arXiv:1005.4455 [math.NA] (2010).

  25. G.J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29, 341–346 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  26. J.C. Nédélec, Curved finite element methods for the solution of singular integral equations on surfaces in ℝ3, Comput. Methods Appl. Mech. Eng. 8(1), 61–80 (1976).

    Article  MATH  Google Scholar 

  27. J.C. Nédélec, Mixed finite elements in ℝ3, Numer. Math. 35(3), 315–341 (1980). doi:10.1007/BF01396415.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.C. Nédélec, A new family of mixed finite elements in ℝ3, Numer. Math. 50(1), 57–81 (1986). doi:10.1007/BF01389668.

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Stakgold, M. Holst, Green’s Functions and Boundary Value Problems, Pure and Applied Mathematics (Hoboken), 3rd edn. (Wiley, Hoboken, 2011).

    Book  MATH  Google Scholar 

  30. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part II/B: Nonlinear Monotone Operators (Springer, New York, 1990). Translated from the German by the author and Leo F. Boron.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Stern.

Additional information

Communicated by Elizabeth Mansfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holst, M., Stern, A. Semilinear Mixed Problems on Hilbert Complexes and Their Numerical Approximation. Found Comput Math 12, 363–387 (2012). https://doi.org/10.1007/s10208-011-9110-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9110-8

Mathematics Subject Classification (2010)

Keywords