Abstract
Arnold, Falk, and Winther recently showed (Bull. Am. Math. Soc. 47:281–354, 2010) that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article (arXiv:1005.4455), we extended the Arnold–Falk–Winther framework by analyzing variational crimes (à la Strang) on Hilbert complexes. In particular, this gave a treatment of finite element exterior calculus on manifolds, generalizing techniques from surface finite element methods and recovering earlier a priori estimates for the Laplace–Beltrami operator on 2- and 3-surfaces, due to Dziuk (Lecture Notes in Math., vol. 1357:142–155, 1988) and later Demlow (SIAM J. Numer. Anal. 47:805–827, 2009), as special cases. In the present article, we extend the Hilbert complex framework in a second distinct direction: to the study of semilinear mixed problems. We do this, first, by introducing an operator-theoretic reformulation of the linear mixed problem, so that the semilinear problem can be expressed as an abstract Hammerstein equation. This allows us to obtain, for semilinear problems, a priori solution estimates and error estimates that reduce to the Arnold–Falk–Winther results in the linear case. We also consider the impact of variational crimes, extending the results of our previous article to these semilinear problems. As an immediate application, this new framework allows for mixed finite element methods to be applied to semilinear problems on surfaces.
Similar content being viewed by others
References
H. Amann, Ein Existenz- und Eindeutigkeitssatz für die Hammersteinsche Gleichung in Banachräumen, Math. Z. 111, 175–190 (1969).
H. Amann, Zum Galerkin-Verfahren für die Hammersteinsche Gleichung, Arch. Ration. Mech. Anal. 35, 114–121 (1969).
D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15, 1–155 (2006). doi:10.1017/S0962492906210018.
D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull., New Ser., Am. Math. Soc. 47(2), 281–354 (2010). doi:10.1090/S0273-0979-10-01278-4.
R.E. Bank, M. Holst, R. Szypowski, Y. Zhu, Finite element error estimates for critical exponent semilinear problems without angle conditions. arXiv:1108.3661 [math.NA] (2011).
A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEE Proc., A Sci. Meas. Technol. 135(8), 493–500 (1988).
F.E. Browder, The solvability of non-linear functional equations, Duke Math. J. 30, 557–566 (1963).
F.E. Browder, C.P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Am. Math. Soc. 75, 1347–1353 (1969).
J. Brüning, M. Lesch, Hilbert complexes, J. Funct. Anal. 108(1), 88–132 (1992). doi:10.1016/0022-1236(92)90147-B.
L. Chen, M.J. Holst, J. Xu, The finite element approximation of the nonlinear Poisson–Boltzmann equation, SIAM J. Numer. Anal. 45(6), 2298–2320 (2007). doi:10.1137/060675514.
S.H. Christiansen, Résolution des équations intégrales pour la diffraction d’ondes acoustiques et électromagnétiques: Stabilisation d’algorithmes itératifs et aspects de l’analyse numérique. Ph.D. thesis, École Polytechnique (2002). http://tel.archives-ouvertes.fr/tel-00004520/.
K. Deckelnick, G. Dziuk, Convergence of a finite element method for non-parametric mean curvature flow, Numer. Math. 72(2), 197–222 (1995). doi:10.1007/s002110050166.
K. Deckelnick, G. Dziuk, Numerical approximation of mean curvature flow of graphs and level sets, in Mathematical Aspects of Evolving Interfaces (Funchal, 2000), Lecture Notes in Math., vol. 1812 (Springer, Berlin, 2003), pp. 53–87.
K. Deckelnick, G. Dziuk, C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numer. 14, 139–232 (2005). doi:10.1017/S0962492904000224.
A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal. 47(2), 805–827 (2009). doi:10.1137/070708135.
A. Demlow, G. Dziuk, An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45(1), 421–442 (2007) (electronic). doi:10.1137/050642873.
G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial Differential Equations and Calculus of Variations. Lecture Notes in Math., vol. 1357 (Springer, Berlin, 1988), pp. 142–155. doi:10.1007/BFb0082865.
G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math. 58(6), 603–611 (1991). doi:10.1007/BF01385643.
G. Dziuk, C.M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal. 27(2), 262–292 (2007). doi:10.1093/imanum/drl023.
G. Dziuk, J.E. Hutchinson, Finite element approximations to surfaces of prescribed variable mean curvature, Numer. Math. 102(4), 611–648 (2006). doi:10.1007/s00211-005-0649-7.
P.W. Gross, P.R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach. Mathematical Sciences Research Institute Publications, vol. 48 (Cambridge University Press, Cambridge, 2004).
M. Holst, Adaptive numerical treatment of elliptic systems on manifolds, Adv. Comput. Math. 15(1–4), 139–191 (2001). doi:10.1023/A:1014246117321.
M. Holst, G. Nagy, G. Tsogtgerel, Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions, Commun. Math. Phys. 288, 547–613 (2009). doi:10.1007/s00220-009-0743-2.
M. Holst, A. Stern, Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. arXiv:1005.4455 [math.NA] (2010).
G.J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29, 341–346 (1962).
J.C. Nédélec, Curved finite element methods for the solution of singular integral equations on surfaces in ℝ3, Comput. Methods Appl. Mech. Eng. 8(1), 61–80 (1976).
J.C. Nédélec, Mixed finite elements in ℝ3, Numer. Math. 35(3), 315–341 (1980). doi:10.1007/BF01396415.
J.C. Nédélec, A new family of mixed finite elements in ℝ3, Numer. Math. 50(1), 57–81 (1986). doi:10.1007/BF01389668.
I. Stakgold, M. Holst, Green’s Functions and Boundary Value Problems, Pure and Applied Mathematics (Hoboken), 3rd edn. (Wiley, Hoboken, 2011).
E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part II/B: Nonlinear Monotone Operators (Springer, New York, 1990). Translated from the German by the author and Leo F. Boron.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Elizabeth Mansfield.
Rights and permissions
About this article
Cite this article
Holst, M., Stern, A. Semilinear Mixed Problems on Hilbert Complexes and Their Numerical Approximation. Found Comput Math 12, 363–387 (2012). https://doi.org/10.1007/s10208-011-9110-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10208-011-9110-8