[go: up one dir, main page]

Skip to main content
Log in

Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This work studies the influence of some constraints on a stabilizing feedback law. An abstract nonlinear control system is considered for which we assume that there exists a linear feedback law that makes the origin of the closed-loop system globally asymptotically stable. This controller is then modified via a cone-bounded nonlinearity. Well-posedness and stability theorems are stated. The first theorem is proved thanks to the Schauder fixed-point theorem and the second one with an infinite-dimensional version of LaSalle’s invariance principle. These results are illustrated on a linear Korteweg-de Vries equation by some simulations and on a nonlinear heat equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A function \(x:[0,\infty )\rightarrow X\) is called a strong solution to (7) if \(x(t)\in D(A)\) for all \(t\ge 0\) and if it satisfies the initial value problem.

References

  1. Brezis H (2010) Functional analysis, Sobolev spaces and partial differential equations. Springer, New York

    Book  Google Scholar 

  2. Castelan EB, Tarbouriech S, Queinnec I (2008) Control design for a class of nonlinear continuous-time systems. Automatica 44(8):2034–2039

    Article  MathSciNet  MATH  Google Scholar 

  3. Cerpa E (2014) Control of a Korteweg-de Vries equation: a tutorial. Math Control Relat Fields 4(1):45–99

    Article  MathSciNet  MATH  Google Scholar 

  4. Chow A, Morris KA (2014) Hysteresis in the linearized Landau–Lifshitz equation. In: 2014 American control conference, Portland, pp 4747–4752

  5. Coron J-M (2007) Control and nonlinearity. American Mathematical Society, Providence

    MATH  Google Scholar 

  6. Coron J-M, Crépeau E (2004) Exact boundary controllability of a nonlinear KdV equation with critical lengths. J Eur Math Soc 6:367–398

    Article  MathSciNet  MATH  Google Scholar 

  7. Coutinho DF, Gomes da Silva JM Jr (2010) Computing estimates of the region of attraction for rational control systems with saturating actuators. IET Control Theory Appl 4(3):315–325

    Article  MathSciNet  Google Scholar 

  8. Crandall MG, Pazy A (1969) Semi-groups of nonlinear contractions and dissipative sets. J Funct Anal 3(3):376–418

    Article  MathSciNet  MATH  Google Scholar 

  9. Curtain R, Zwart H (2016) Stabilization of collocated systems by nonlinear boundary control. Syst Control Lett 96:11–14

    Article  MathSciNet  MATH  Google Scholar 

  10. Daafouz J, Tucsnak M, Valein J (2014) Nonlinear control of a coupled pde/ode system modeling a switched power converter with a transmission line. Syst Control Lett 70:92–99

    Article  MathSciNet  MATH  Google Scholar 

  11. d’Andréa Novel B, Boustany F, Conrad F, Rao BP (1994) Feedback stabilization of a hybrid PDE-ODE system: application to an overhead crane. Math Control Signals Syst 13(1):97–106

    MathSciNet  MATH  Google Scholar 

  12. Grimm G, Hatfield J, Postlethwaite I, Teel AR, Turner MC, Zaccarian L (2003) Antiwindup for stable linear systems with input saturations: an LMI-based synthesis. IEEE Trans Automat Control 43:1509–1564

    Article  MathSciNet  MATH  Google Scholar 

  13. Hale JK (1969) Dynamical systems and stability. J Math Anal Appl 26(1):39–59

    Article  MathSciNet  MATH  Google Scholar 

  14. Jayawardhana B, Logemann H, Ryan EP (2008) Infinite-dimensional feedback systems: the circle criterion and input-to-state stability. Commun Inf Syst 8(4):413–444

    MathSciNet  MATH  Google Scholar 

  15. Jayawardhana B, Logemann H, Ryan EP (2011) The circle criterion and input-to-state stability. IEEE Control Syst 31(4):32–67

    Article  MathSciNet  MATH  Google Scholar 

  16. Khalil HK (1996) Nonlinear systems, Second edn. Prentice Hall, Inc, Upper Saddle River

    Google Scholar 

  17. Komura Y (1967) Nonlinear semi-groups in Hilbert space. J Math Soc Jpn 19(4):493–507

    Article  MathSciNet  MATH  Google Scholar 

  18. Laporte J, Chaillet A, Chitour Y (2015) Global stabilization of multiple integrators by a bounded feedback with constraints on its successive derivatives. In: Proceedings of the 54th IEEE conference on decision and control, Osaka, pp 3983–3988

  19. Lasiecka I, Seidman TI (2003) Strong stability of elastic control systems with dissipative saturating feedback. Syst Control Lett 48:243–252

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu W, Chitour Y, Sontag E (1996) On finite-gain stabilizability of linear systems subject to input saturation. SIAM J Control Optim 34(4):1190–1219

    Article  MathSciNet  MATH  Google Scholar 

  21. Marx S, Cerpa E, Prieur C, Andrieu V (2015) Stabilization of a linear Korteweg-de Vries with a saturated internal control. In: Proceedings of the European control conference, Linz, pp 867–872

  22. Marx S, Cerpa E, Prieur C, Andrieu V (2017) Global stabilization of a Korteweg–De Vries equation with saturating distributed control. SIAM J Control Optim 55(3):1452–1480

    Article  MathSciNet  MATH  Google Scholar 

  23. Miyadera I (1992) Nonlinear semigroups. Translations of mathematical monographs

  24. Pazoto AF, Sepúlveda M, Vera Villagrán O (2010) Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping. Numer Math 116(2):317–356

    Article  MathSciNet  MATH  Google Scholar 

  25. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Springer, New York

    Book  MATH  Google Scholar 

  26. Prieur C, Tarbouriech S, Gomes da Silva JM Jr (2016) Wave equation with cone-bounded control laws. IEEE Trans Automat Control 61(11):3452–3463

    Article  MathSciNet  MATH  Google Scholar 

  27. Rosier L (1997) Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim Calc Var 2:33–55

    Article  MathSciNet  MATH  Google Scholar 

  28. Rosier L, Zhang B-Y (2006) Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain. SIAM J Control Optim 45(3):927–956

    Article  MathSciNet  MATH  Google Scholar 

  29. Seidman TI, Li H (2001) A note on stabilization with saturating feedback. Discrete Contin Dyn Syst 7(2):319–328

    Article  MathSciNet  MATH  Google Scholar 

  30. Showalter RE (1997) Monotone operators in Banach space and nonlinear partial differential equations. Mathematical surveys and monographs

  31. Slemrod M (1989) Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control. Math Control Signals Syst 2(3):847–857

    Article  MathSciNet  MATH  Google Scholar 

  32. Sussmann HJ, Yang Y (1991) On the stabilizability of multiple integrators by means of bounded feedback controls. Technical report SYCON-91-01, Rutgers Center for Systems and Control

  33. Tarbouriech S, Garcia G, Gomes da Silva JM Jr, Queinnec I (2011) Stability and stabilization of linear systems with saturating actuators. Springer, New York

    Book  MATH  Google Scholar 

  34. Teel AR (1992) Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst Control Lett 18:165–171

    Article  MathSciNet  MATH  Google Scholar 

  35. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Springer, New York

    Book  MATH  Google Scholar 

  36. Van der Schaft A, Jeltsema D (2014) Port-Hamiltonian systems theory: an introductory overview. Found Trends Syst Control 1(2–3):173–378

    Article  Google Scholar 

  37. Zaccarian L, Teel AR (2011) Modern anti-windup synthesis: control augmentation for actuator saturation. Princeton University Press, Princeton

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swann Marx.

Appendices

A Precompacity of the KdV equation with a cone-bounded nonlinearity

This section is devoted to the proof of the precompactness of the canonical embedding from \(D(A_\sigma )=D(A)\), defined in (26), into \(X:=L^2(0,L)\). Let us state the lemma and prove it.

Lemma 2

The canonical embedding from \(D(A_\sigma )\), equipped with the graph norm, into \(X:=L^2(0,L)\) is compact.

Proof of Lemma 2

We follow the strategy of [21, 26] and [11]. Let us recall the definition of the graph norm

$$\begin{aligned} \begin{aligned} \Vert x\Vert ^2_{D(A_\sigma )}&:=\Vert x\Vert ^2_{L^2(0,L)}+\Vert A_\sigma x\Vert ^2_{L^2(0,L)}\\&=\,\int _0^L \left( |x(z)|^2+|-x^{\prime \prime \prime }(z)-x^{\prime }(z)-\sigma \left( {\mathfrak {1}}_{\varOmega }x\right) (z)|^2\right) \mathrm{d}z\\&=\,\int _0^L \left( |x(z)|^2+|x^{\prime \prime \prime }(z)+x^{\prime }(z)+\sigma \left( {\mathfrak {1}}_{\varOmega }x\right) (z)|^2\right) \mathrm{d}z. \end{aligned} \end{aligned}$$
(97)

Note that

$$\begin{aligned} \Vert \sigma \left( {\mathfrak {1}}_{\varOmega }x\right) \Vert _{L^2(0,L)}\le 2\Vert x\Vert _{L^2(0,L)}. \end{aligned}$$
(98)

From the definition of the graph norm, we get the following two inequalities

$$\begin{aligned} \Vert x\Vert ^2_{D(A_\sigma )}\ge \Vert x\Vert ^2_{L^2(0,L)} \end{aligned}$$
(99)

and, since, for all \((s,\tilde{s})\in {\mathbb {C}}^2\), it holds \(|s+\tilde{s}|^2\le 2|s|^2+2|\tilde{s}|^2\), we have

$$\begin{aligned} \begin{aligned} \Vert x\Vert ^2_{D(A_\sigma )}\ge&\,\frac{1}{2}\int _0^L |-\sigma \left( {\mathfrak {1}}_{\varOmega }x\right) (z)|^2\mathrm{d}z\\&+\,\frac{1}{2}\int _0^L |x^{\prime \prime \prime }(z)+x^\prime (z)+\sigma \left( {\mathfrak {1}}_{\varOmega }x\right) (z)|^2\mathrm{d}z\\ \ge&\,\frac{1}{4}\int _0^L |x^{\prime \prime \prime }(z)+x^\prime (z)|^2 \mathrm{d}z. \end{aligned} \end{aligned}$$
(100)

Noticing that \(\Vert x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}=\Vert x^{\prime \prime \prime }+x^\prime -x^\prime \Vert ^2_{L^2(0,L)}\), we have

$$\begin{aligned} \Vert x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)} \le 2\Vert x^{\prime \prime \prime }+x^\prime \Vert ^2_{L^2(0,L)}+2\Vert x^\prime \Vert ^2_{L^2(0,L)}, \end{aligned}$$
(101)

and using that \(\Vert x^\prime \Vert ^2_{L^2(0,L)}=\Vert x^\prime +x^{\prime \prime \prime }-x^{\prime \prime \prime }+zx-zx\Vert ^2_{L^2(0,L)}\), we obtain

$$\begin{aligned} \begin{aligned} \Vert x^\prime \Vert ^2_{L^2(0,L)}\le&\, 2\Vert x^\prime +x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}+2\Vert x^{\prime \prime \prime }-zx+zx\Vert ^2_{L^2(0,L)}\\ \le&\, 2\Vert x^\prime +x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}+4\Vert x^{\prime \prime \prime }-zx\Vert ^2_{L^2(0,L)}+4\Vert zx\Vert ^2_{L^2(0,L)}\\ \le&\, 2\Vert z^\prime +x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}+4\Vert x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}\\&-8\int _0^L zx^{\prime \prime \prime }(z)x(z)\mathrm{d}z+8\Vert zx\Vert ^2_{L^2(0,L)}. \end{aligned} \end{aligned}$$

Deriving some integrations by parts, we get

$$\begin{aligned} \int _0^L zx^{\prime \prime \prime }(z)x(z)\mathrm{d}z=\frac{3}{2}\Vert x^\prime \Vert ^2_{L^2(0,L)}, \end{aligned}$$

and therefore

$$\begin{aligned} \begin{aligned} \Vert x^\prime \Vert ^2_{L^2(0,L)}\le 2\Vert x^\prime +x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}+4\Vert x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}-12\Vert x^{\prime }\Vert ^2_{L^2(0,L)}+8\Vert zx\Vert ^2_{L^2(0,L)}. \end{aligned}\nonumber \\ \end{aligned}$$
(102)

Hence,

$$\begin{aligned} \begin{aligned} 13\Vert x^\prime \Vert ^2_{L^2(0,L)}\le 2\Vert x^\prime +x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}+4\Vert x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}+8L^2\Vert x\Vert ^2_{L^2(0,L)}. \end{aligned} \end{aligned}$$
(103)

Plugging inequality (101) in (103), we have

$$\begin{aligned} \begin{aligned} 13\Vert x^\prime \Vert ^2_{L^2(0,L)}\le&\,2\Vert x^\prime +x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}+4\left( 2\Vert x^{\prime \prime \prime }+x^\prime \Vert ^2_{L^2(0,L)}+2\Vert x^\prime \Vert ^2_{L^2(0,L)}\right) \\&+\,8L^2\Vert x\Vert ^2_{L^2(0,L)}\\ \le&\,10\Vert x^\prime +x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}+8\Vert x^\prime \Vert ^2_{L^2(0,L)}+8L^2\Vert x\Vert ^2_{L^2(0,L)}. \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert x^\prime \Vert ^2_{L^2(0,L)}\le 2\Vert x^\prime +x^{\prime \prime \prime }\Vert ^2_{L^2(0,L)}+\frac{8L^2}{5}\Vert x\Vert ^2_{L^2(0,L)}. \end{aligned}$$
(104)

Considering Equations (99) and (100), it leads us to the following inequality, for all \(x\in D(A)\),

$$\begin{aligned} \Vert x^\prime \Vert ^2_{L^2(0,L)}\le \varDelta \Vert x\Vert ^2_{D(A_\sigma )} \end{aligned}$$
(105)

where \(\varDelta \) is a term which depends only on L.

Thus, if we consider now a sequence \(\{x_n\}_{n\in \mathbb {N}}\) in \(D(A_\sigma )\) bounded for the graph norm of \(D(A_\sigma )\), we have from (105) that this sequence is bounded in \(H^1_0(0,L)\). Since the canonical embedding from \(H^1_0(0,L)\) to \(L^2(0,L)\) is compact, there exists a subsequence still denoted \(\{x_n\}_{n\in \mathbb {N}}\) such that \(x_n\rightarrow x\) in \(L^2(0,L)\). Thus x belongs to \(L^2(0,L)\) which allows us to state that \(D(A_\sigma )\) embeds compactly in X. It concludes the proof of Lemma 2. \(\square \)

B Nonlinear heat equation

1.1 B.1 Proof of the m-dissipativity of the nonlinear heat equation

This subsection is devoted to the proof of the following theorem.

Theorem 4

The operator defined by (39) is m-dissipative

Proof of Theorem 4

The proof of Theorem 4 is divided in two steps. First, the operator A is proved to be dissipative. Secondly, we prove that, for all \(f\in L^2(0,L)\), there exist \(x\in D(A)\) such that

$$\begin{aligned} x-Ax = f. \end{aligned}$$
(106)

Let us recall that the dissipativity and the existence of \(x\in D(A)\) such that (106) holds imply that A is a m-dissipative operator.

First step: Dissipativity of the operator A.

Note that we have

$$\begin{aligned} \langle Ax-A{\tilde{x}},x-{\tilde{x}}\rangle _{L^2(0,1)}= & {} \int _0^1 (x-{\tilde{x}})(x^{\prime \prime }-{\tilde{x}}^{\prime \prime }) \mathrm{d}z\nonumber \\&+\int _0^L (x-{\tilde{x}})(\sin (x)-\sin ({\tilde{x}}))\mathrm{d}z. \end{aligned}$$
(107)

Performing some integrations by parts leads to

$$\begin{aligned} \int _0^L (x-{\tilde{x}})(x^{\prime \prime }-{\tilde{x}}^{\prime \prime }) \mathrm{d}z=-\int _0^1 (x^\prime -{\tilde{x}}^\prime )^2 \mathrm{d}z. \end{aligned}$$
(108)

Moreover, using the fact that \(\sin \) is Lipschitz together with a Poincaré inequality, one has

$$\begin{aligned} \int _0^L (x-{\tilde{x}})(\sin (x)-\sin ({\tilde{x}}))\mathrm{d}z \le \int _0^L (x-{\tilde{x}})^2 \mathrm{d}z\le \frac{4}{\pi ^2} \int _0^1 (x^\prime - {\tilde{x}}^\prime )^2\mathrm{d}z.\qquad \end{aligned}$$
(109)

Hence, it is easy to see that

$$\begin{aligned} \langle Ax-A{\tilde{x}},x-{\tilde{x}}\rangle _{L^2(0,1)}\le 0. \end{aligned}$$
(110)

Second step: Existence of \(x\in D(A)\) such that (106) holds

To prove the existence of \(x\in D(A)\) such that (106) holds, one has to prove that there exists a solution to the following nonlinear ODE

$$\begin{aligned} \left\{ \begin{aligned}&x - x^{\prime \prime }+\sin (x)= f,\\&x(0)=x(1)=0. \end{aligned} \right. \end{aligned}$$
(111)

We aim at applying the Schauder fixed-point theorem to the following nonhomogeneous linear ODE

$$\begin{aligned} \left\{ \begin{aligned}&x - x^{\prime \prime }=-\sin (y)+ f,\\&x(0)=x(1)=0, \end{aligned} \right. \end{aligned}$$
(112)

where \(y\in L^2(0,1)\). It is easy to see that there exists a unique solution to (112).

Focus on the map

$$\begin{aligned} \begin{aligned} {\mathcal {T}}:L^2(0,1)&\rightarrow L^2(0,1)\\ y&\mapsto x ={\mathcal {T}}(y) \end{aligned} \end{aligned}$$
(113)

where \(x={\mathcal {T}}(y)\) is the unique solution to (112).

We define

$$\begin{aligned} C : = \lbrace x\in H^1_0(0,1)\mid \Vert x\Vert _{H^1_0(0,1)}\le M\rbrace . \end{aligned}$$
(114)

From the theorem of Rellich, the injection of \(H^1_0(0,1)\) in \(L^2(0,1)\) is compact, then C is bounded in \(H^1_0(0,1)\) and is relatively compact in \(L^2(0,1)\). Moreover, it is a closed subset of \(L^2(0,1)\). Thus C is a compact subset of \(L^2(0,1)\). In order to apply the Schauder theorem, we have to prove that \({\mathcal {T}}(L^2(0,1))\subset C\) for a suitable choice of M and \(\lambda \). Let us multiply the first line of (112) by z and then integrate between 0 and 1. After some integrations by parts, one has

$$\begin{aligned} \Vert x\Vert ^2_{L^2(0,1)}+\Vert x^\prime \Vert ^2_{L^2(0,1)}=\int _0^1 fx \mathrm{d}z -\int _0^1 \sin (y)x\mathrm{d}z. \end{aligned}$$
(115)

Hence, applying Cauchy Schwarz inequality leads to

$$\begin{aligned} \Vert x^\prime \Vert ^2_{L^2(0,1)}\le \frac{1}{2}\Vert f\Vert ^2_{L^2(0,1)} + \frac{1}{2} - \Vert x\Vert ^2_{L^2(0,1)}+\Vert x\Vert ^2_{L^2(0,1)}. \end{aligned}$$
(116)

Therefore, since \(\Vert x^\prime \Vert ^2_{L^2(0,1)}\) and \(\Vert x\Vert _{H^1_0(0,1)}\) are equivalent by the Poincaré inequality, one has

$$\begin{aligned} \Vert x\Vert _{H^1_0(0,1)}\le M, \end{aligned}$$
(117)

where

$$\begin{aligned} M:=\sqrt{\frac{1}{2}\left( \Vert f\Vert ^2_{L^2(0,1)} + 1\right) }. \end{aligned}$$

Hence, applying Theorem 3, it concludes the proof of Theorem 4. \(\square \)

1.2 B.2 Precompacity of the nonlinear heat equation with a cone-bounded nonlinearity

This subsection is devoted to the proof of the following lemma.

Lemma 3

The canonical embedding from \(D(A_\sigma )\), equipped with the graph norm, into \(X:=L^2(0,1)\) is compact.

Proof of Lemma 3

We follow the strategy of [21, 26] and [11]. Let us recall the definition of the graph norm

$$\begin{aligned} \begin{aligned} \Vert x\Vert ^2_{D(A_\sigma )}&:=\Vert x\Vert ^2_{L^2(0,1)}+\Vert A_\sigma x\Vert ^2_{L^2(0,1)}\\&=\,\int _0^1 \left( |x(z)|^2+|x^{\prime \prime }(z)+\sin (x)(z)-\sigma \left( x\right) (z)|^2\right) \mathrm{d}z \end{aligned} \end{aligned}$$
(118)

Note that we have

$$\begin{aligned} \Vert x\Vert ^2_{D(A_\sigma )}\ge \Vert x\Vert ^2_{L^2(0,1)} \end{aligned}$$
(119)

and

$$\begin{aligned}&\Vert x\Vert ^2_{D(A_\sigma )}\ge \, \frac{1}{4}\int _0^1 |\sigma (x)(z)|^2 \mathrm{d}z + \frac{1}{4}\int _0^1 |-\sin (x)(z)|^2\mathrm{d}z\nonumber \\&\qquad \qquad \qquad \,+\,\frac{1}{4}\int _0^1 |x^{\prime \prime }(z)+\sin (x)(z)-\sigma (x)(z)|^2 \mathrm{d}x\nonumber \\&\qquad \qquad \quad \,\ge \,\frac{1}{8}\int _0^1 |x^{\prime \prime }(z)|^2\mathrm{d}z. \end{aligned}$$
(120)

Hence,

$$\begin{aligned} \Vert x\Vert ^2_{D(A_\sigma )}\ge \frac{1}{8}\Vert x^{\prime \prime }\Vert ^2_{L^2(0,1)}. \end{aligned}$$
(121)

Noticing that \(\Vert x\Vert _{L^2(0,1)}^2 = \Vert x-x^{\prime \prime }+x^{\prime \prime }\Vert _{L^2(0,1)}^2\), we have

$$\begin{aligned} \begin{aligned} \Vert x\Vert _{L^2(0,1)}^2&= \Vert x+x^{\prime \prime }\Vert _{L^2(0,1)}^2 + \Vert x^{\prime \prime }\Vert ^2_{L^2(0,1)}\\&=\,\Vert x\Vert _{L^2(0,1)}^2 +\Vert x^{\prime \prime }\Vert ^2_{L^2(0,1)}+2\int _0^1 x(z)x^{\prime \prime }(z)~\mathrm{d}z+ \Vert x^{\prime \prime }\Vert ^2_{L^2(0,1)}. \end{aligned} \end{aligned}$$
(122)
$$\begin{aligned} -\int _0^1 x(z)x^{\prime \prime }(z)\mathrm{d}z = \Vert x^{\prime \prime }(z)\Vert ^2_{L^2(0,1)}. \end{aligned}$$
(123)

Performing an integration by parts, we obtain

$$\begin{aligned} \int _0^1 x(z)x^{\prime \prime }(z)\mathrm{d}z =-\Vert x^{\prime }(z)\Vert ^2_{L^2(0,1)}. \end{aligned}$$
(124)

Hence, using (121), the following inequality holds

$$\begin{aligned} \Vert x^{\prime }\Vert ^2_{L^2(0,1)}\le 8\Vert x\Vert ^2_{D(A_\sigma )}. \end{aligned}$$
(125)

Thus, if we consider now a sequence \(\{x_n\}_{n\in \mathbb {N}}\) in \(D(A_\sigma )\) bounded for the graph norm of \(D(A_\sigma )\), we have from (105) that this sequence is bounded in \(H^1_0(0,L)\). Since the canonical embedding from \(H^1_0(0,L)\) to \(L^2(0,L)\) is compact, there exists a subsequence still denoted \(\{x_n\}_{n\in \mathbb {N}}\) such that \(x_n\rightarrow x\) in \(L^2(0,L)\). Thus x belongs to \(L^2(0,L)\) which allows us to state that \(D(A_\sigma )\) embedds compactly in X. It concludes the proof of Lemma 3. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marx, S., Andrieu, V. & Prieur, C. Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces. Math. Control Signals Syst. 29, 18 (2017). https://doi.org/10.1007/s00498-017-0205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-017-0205-x

Keywords

Navigation