[go: up one dir, main page]

Skip to main content
Log in

Global Existence and Convergence of the Solution to the Nonlinear \(\psi \)-Caputo Fractional Diffusion Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper studies the initial-boundary value problem of a class of nonlinear time-fractional parabolic equations, where the fractional derivative used is in the sense of \(\psi \)-Caputo derivative of order \(\alpha \in (0,1)\). By using the modified \(\psi \)-Laplace transform and Fourier sine transform, the mild solution of the equation is derived. When the initial value is in an appropriate space and small enough, the global existence and uniqueness of this mild solution are proved. Furthermore, under some appropriate assumptions on the initial conditions, it is proved that when \(\alpha \rightarrow 1^-\), the mild solution of the time-fractional equation will converge to the mild solution of its classical corresponding problem. These conclusions are applicable not only to the Burgers equation but also to the Navier–Stokes equations. Finally, taking the Navier–Stokes equations as an example, the convergence is verified through numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Aurora, M., Pulido, P., Vanterler, J., Sousa, C., Capelas De Oliveira, E.: New discretization of \(\psi \)-Caputo fractional derivative and applications. Math. Comput. Simulat. 221, 135–158 (2024)

  • Brown, D.: Performance of under-resolved two-dimensional incompressible flow simulations. J. Comput. Phys. 122(1), 165–183 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Carvalho-Neto, P., Planas, G.: Mild solutions to the time fractional Navier-Stokes equations in \({{\mathbb{R} }}^N\). J. Differ. Equ. 259, 2948–2980 (2015)

    Article  MATH  Google Scholar 

  • Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, New York (1993)

    Book  MATH  Google Scholar 

  • Ciprian, G., Warma, M.: Fractional-in-Time Semilinear Parabolic Equations and Applications. Springer, Cham (2020)

    MATH  Google Scholar 

  • de Andrade, B., Siracusa, G., Viana, A.: A nonlinear fractional diffusion equation: well-posedness, comparison results and blow-up. J. Math. Anal. Appl. 505, 125524 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Debnath, L., Bhatta, D.: Integral Transforms and Their Applications. Chapman and Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  • Denisov, S.I., Kantz, H.: Continuous-time random walk theory of superslow diffusion. Europhys. Lett. 92, 30001 (2010)

    Article  MATH  Google Scholar 

  • Di, Y., Li, R., Tang, T., Zhang, P.: Moving mesh finite element methods for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 26(3), 1036–1056 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, E.Y., Li, C.P.: Diffusion in Allen-Cahn equation: Normal vs anomalous. Phys D 457, 133973 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, E.Y., Li, C.P., Stynes, M.: Discretised general fractional derivative. Math. Comput. Simulat. 208, 501–534 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, E.Y., Li, C.P., Li, Z.Q.: Numerical methods for the Caputo-type fractional derivative with an exponential kernel. J. Appl. Anal. Comput. 13(1), 376–423 (2023)

    MathSciNet  MATH  Google Scholar 

  • Garra, R., Mainardi, F., Spada, G.: A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos Solitons Fractals 102, 333–338 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equations 62(2), 186–212 (1986)

    Article  MATH  Google Scholar 

  • Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discrete. Cont. Dyn.-S 13(3), 709–722 (2020)

    MathSciNet  MATH  Google Scholar 

  • Jin, B., Zhou, Z.: Numerical Treatment and Analysis of Time-Fractional Evolution Equations. Springer, Cham (2023)

    Book  MATH  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Appl Fractional Differential Equ. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  • Kong, Q.X., Ding, X.L.: A new fractional integral inequality with singularity and its application. Abstr. Appl. Anal. 2012, 937908 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C.P., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM, Philadelphia (2019)

  • Li, C.P., N’Gbo, N., Su, F.: Finite difference methods for nonlinear fractional differential equation with \(\psi \)-Caputo derivative. Physica D 460, (2024)

  • Li, C.P., Li, Z.Q.: Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J. Nonlinear Sci. 31(2), 31 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C.P., Li, Z.Q.: The finite-time blow-up for semilinear fractional diffusion equations with time \(\psi \)-Caputo derivative. J. Nonlinear Sci. 32, 82 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Z.Q., Yan, Y.B.: Existence, uniqueness and regularity for a semilinear stochastic subdiffusion with integrated multiplicative noise. Fract. Calc. Appl. Anal. 27, 487–518 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, P., Xiao, J., Yang, Q.: Global mild solutions of fractional Naiver-Stokes equations with small initial data in critical Besov-Q spaces. Electron J. Differ. Eq. 185, 1–37 (2014)

    MATH  Google Scholar 

  • Podlubny, I.: Fractional Differential Equ. Academic Press, New York (1999)

  • Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Basel (1993)

  • Sun, Z.Z., Gao, G.H.: Fractional Differential Equations: Finite Difference Methods. De Gruyter, Berlin (2020)

    Book  MATH  Google Scholar 

  • Tuan, N.H.: Global existence and convergence results for a class of nonlinear time fractional diffusion equation. Nonlinearity 36(10), 5144 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  • Tuan, N.H., Caraballo, T.: On initial and terminal value problems for fractional nonclassical diffusion equations. P. Am. Math. Soc. 149(1), 143–161 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Viana, A.: A local theory for a fractional reaction-diffusion equation. Commun. Contemp. Math. 21(6), 1850033 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z., Sun, L.: Mathematical analysis of the Hadamard-type fractional Fokker-Planck equation. Mediterr. J. Math. 20, 245 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng, B., Wang, S.: Existence for nonlinear fractional evolutionary equations involving \(\psi \)-caputo fractional derivative. J. Appl. Anal. Comput. 14(3), 1414–1433 (2024)

    MathSciNet  MATH  Google Scholar 

  • Zhu, B., Liu, L., Wu, Y.: Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay. Appl. Math. Lett. 61, 73–79 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rui Zhu helped in writing—original draft. Zhen Wang contributed to writing—review & editing. Zhengdi Zhang validated the study.

Corresponding author

Correspondence to Zhen Wang.

Ethics declarations

Conflict of interest

The authors declare there is no Conflict of interest.

Additional information

Communicated by Changpin Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the National Natural Science Foundation of China (Grant Nos. 12101266, 12372012).

Appendices

Appendix

The Analytical Solution of Problem (1.1)

Applying the modified \(\psi \)-Laplace transform to both sides of (1.1) and utilizing Lemma 2.2, we obtain

$$\begin{aligned} s^\alpha {{\widetilde{u}}}(x,y, s) - s^{\alpha -1} u_a(x,y) - \Delta {{\widetilde{u}}}(x,y, s) = {{\widetilde{G}}}(u(x,y, s)). \end{aligned}$$
(A.1)

Further applying the Fourier sine transform to both sides gives

$$\begin{aligned} s^\alpha \widehat{{{\widetilde{u}}}}(x,y, s) - s^{\alpha -1} {{\widehat{u}}}_a(x,y) + \pi ^2 \left( \frac{m^2}{L_1^2} + \frac{n^2}{L_2^2}\right) \widehat{{{\widetilde{u}}}}(x,y,s) = \widehat{{{\widetilde{G}}}}(u(x,y,s)), \nonumber \\ \end{aligned}$$
(A.2)

which can be rearranged to solve for \(\widehat{{{\widetilde{u}}}}(x,y, s)\), i.e.,

$$\begin{aligned} \widehat{{{\widetilde{u}}}}(x,y, s)&= \frac{s^{\alpha -1}}{s^\alpha + \pi ^2 \left( \frac{m^2}{L_1^2} + \frac{n^2}{L_2^2}\right) } {{\widehat{u}}}_a(x,y) + \frac{1}{s^\alpha + \pi ^2 \left( \frac{m^2}{L_1^2} + \frac{n^2}{L_2^2}\right) } \widehat{{{\widetilde{G}}}}(u(x,y, s)). \end{aligned}$$
(A.3)

Utilizing the inverse Fourier sine transformation alongside the inverse modified \(\psi \)-Laplace transformation, we derive

$$\begin{aligned}&u(x,y, t)\nonumber \\&=\frac{4}{L_1L_2}\sum _{m=1}^{\infty }\sum _{n=1}^{\infty }E_{\alpha , 1}\left( -\pi ^2\left( \frac{m^2}{L_1^2}+\frac{n^2}{L_2^2}\right) \left( \psi (t)-\psi (a)\right) ^\alpha \right) \nonumber \\&\quad \times \int _{0}^{L_2}\int _{0}^{L_1}u_a(x,y)\sin \left( \frac{m\pi x}{L_1}\right) \sin \left( \frac{n\pi y}{L_2}\right) \textrm{d}x\textrm{d}y\cdot \sin \left( \frac{m\pi x}{L_1}\right) \sin \left( \frac{n\pi y}{L_2}\right) \nonumber \\&\quad +\frac{4}{L_1L_2}\sum _{m=1}^{\infty }\sum _{n=1}^{\infty }\int _{a}^{t}\left( \psi (w)-\psi (a)\right) ^{\alpha -1}\nonumber \\&\quad \times \int _{0}^{L_2}\int _{0}^{L_1}G\Big (u\big (x,y, \psi ^{-1}\big (\psi (t)-\psi (w)+\psi (a)\big )\big ))\Big )\nonumber \\&\quad \times \sin \left( \frac{m\pi x}{L_1}\right) \sin \left( \frac{n\pi y}{L_2}\right) \textrm{d}x\textrm{d}y\cdot \nonumber \\&\quad \times E_{\alpha , \alpha }\left( -\pi ^2\left( \frac{m^2}{L_1^2}+\frac{n^2}{L_2^2}\right) \left( \psi (w)-\psi (a)\right) ^\alpha \right) \psi '(w)\textrm{d}w\nonumber \\&\quad \times \sin \left( \frac{m\pi x}{L_1}\right) \sin \left( \frac{n\pi y}{L_2}\right) . \end{aligned}$$

Let \(s = \psi ^{-1}(\psi (t) - \psi (w) + \psi (a))\), then we have

$$\begin{aligned} \begin{aligned}&u(x,y,t)\\&=\frac{4}{L_1L_2}\sum _{m=1}^{\infty }\sum _{n=1}^{\infty }E_{\alpha , 1}\left( -\pi ^2\left( \frac{m^2}{L_1^2}+\frac{n^2}{L_2^2}\right) \left( \psi (t)-\psi (a)\right) ^\alpha \right) \\&\quad \times \int _{0}^{L_2}\int _{0}^{L_1}u_a(x,y)\sin \left( \frac{m\pi x}{L_1}\right) \sin \left( \frac{n\pi y}{L_2}\right) \textrm{d}x\textrm{d}y\times \sin \left( \frac{m\pi x}{L_1}\right) \sin \left( \frac{n\pi y}{L_2}\right) \\&\quad +\frac{4}{L_1L_2}\int _{a}^{t}\left( \psi (t)-\psi (s)\right) ^{\alpha -1}\int _{0}^{L_2}\int _{0}^{L_1}G(u(x,y, s))\sin \left( \frac{m\pi x}{L_1}\right) \sin \left( \frac{n\pi y}{L_2}\right) \textrm{d}x\textrm{d}y\\&\quad \times E_{\alpha , \alpha }\left( -\pi ^2\left( \frac{m^2}{L_1^2}+\frac{n^2}{L_2^2}\right) \left( \psi (t)-\psi (s)\right) ^\alpha \right) \psi '(s)\textrm{d}s\cdot \sin \left( \frac{m\pi x}{L_1}\right) \sin \left( \frac{n\pi y}{L_2}\right) . \end{aligned}\nonumber \\ \end{aligned}$$
(A.4)

Define \(\lambda _{m, n}=\frac{m^2}{L_1^2}+\frac{n^2}{L_2^2},\; \phi _{m, n}=\frac{4}{L_1L_2}\sin \left( \frac{m\pi x}{L_1}\right) \sin \left( \frac{n\pi y}{L_2}\right) , \;\) and the operators

$$\begin{aligned}&{{\mathbb {S}}}_\alpha (t) v=\sum _{m=1}^{\infty }\sum _{n=1}^{\infty }E_{\alpha , 1}\left( -t^\alpha \lambda _{m, n}\right) (v, \phi _{m, n})\phi _{m, n}, \\&{{\mathbb {P}}}_\alpha (t) v=\sum _{m=1}^{\infty }\sum _{n=1}^{\infty }E_{\alpha , \alpha }\left( -t^\alpha \lambda _{m, n}\right) (v, \phi _{m, n})\phi _{m, n}. \end{aligned}$$

Thus, the analytical form of u(xyt) is given by

$$\begin{aligned} u(x,y, t)= & {{\mathbb {S}}}_\alpha \left( \psi (t)-\psi (a)\right) u_a+\int _{a}^{t}\left( \psi (t)-\psi (s)\right) ^{\alpha -1}\nonumber \\ & \times {{\mathbb {P}}}_\alpha (\psi (t)-\psi (s))G(u(x,y, s))\psi '(s)\textrm{d}s. \end{aligned}$$
(A.5)

Singular Gronwall Inequality

Drawing on the ideas in (Kong and Ding (2012), Theorem 2.7), we obtain the following singular Gronwall inequality.

Lemma B.1

(Singular Gronwall Inequality) Let \(\alpha , \beta , \gamma > 0\), \(\delta = \alpha + \gamma - 1 > 0\), \( \nu = \beta + \gamma - 1 > 0\), \(A \ge 0\), and let b(t) be a nonnegative, nondecreasing continuous function on the interval [aT] such that \(0 \le b(t) \le M\) for some \(M > 0\). Additionally, assume that \(w(t) \ge 0\) and is locally integrable on [aT]. Furthermore, suppose w(t) satisfies the inequality

$$\begin{aligned} w(t)&\le A(\psi (t) - \psi (a))^{\alpha -1} + b(t)\int _{a}^{t}(\psi (t) - \psi (s))^{\beta -1}\nonumber \\&\quad \,\, \,\times (\psi (s) - \psi (a))^{\gamma -1}w(s)\psi '(s)\textrm{d}s, \; \forall t \in [a,T]. \end{aligned}$$
(B.2)

Then, we can conclude that

$$\begin{aligned} \left\{ \begin{aligned}&w(t) \le A(\psi (t) - \psi (a))^{\alpha -1}F_{ {\nu }, \delta , \delta +\beta }\left[ \Gamma (\beta )b(t)(\psi (t) - \psi (a))^{ {\nu }}\right] , \;&A > 0, \\&w(t) = 0, \;&A = 0, \end{aligned} \right. \end{aligned}$$

where

$$\begin{aligned} F_{\rho , a, b}(z) = \sum _{k=0}^{\infty }c_kz^k, \quad c_{k+1} = \frac{\Gamma (k\rho +a)}{\Gamma (k\rho +b)}c_k, \; c_0> 0, \; b> a> 0, \; \rho > 0. \nonumber \\ \end{aligned}$$
(B.3)

Specifically, if \(\alpha = \gamma = 1\), with \(c_0 = 1\), then \(F_{ {\nu }, \delta , \delta +\beta }(z) = E_{\beta , 1}(z)\).

Proof

Define the operator \({{\mathscr {R}}}\) as

$$\begin{aligned} ({{\mathscr {R}}}w)(t) = b(t)\int _{a}^{t}(\psi (t)-\psi (s))^{\beta -1}(\psi (s)-\psi (a))^{\gamma -1}\psi '(s)w(s)\textrm{d}s. \end{aligned}$$
(B.4)

Consequently, the assumption (B.2) can be rewritten in the form

$$\begin{aligned} w(t) \le A(\psi (t)-\psi (a))^{\alpha -1} + ({{\mathscr {R}}}w)(t). \end{aligned}$$
(B.5)

From this, it is straightforward to deduce that

$$\begin{aligned} w(t) \le \sum _{k=0}^{n}({{\mathscr {R}}}^k A(\psi (t)-\psi (a))^{\alpha -1}) + ({{\mathscr {R}}}^{n+1}w)(t), \; n \in {{\mathbb {N}}}. \end{aligned}$$
(B.6)

Next, we aim to prove the inequality given by

$$\begin{aligned} ({{\mathscr {R}}}^{n}w)(t)\le \left\{ \begin{aligned}&b(t)(\Gamma (\beta )b(t))^{n-1}\prod _{i=1}^{n-1}\frac{\Gamma (i{\nu })}{\Gamma (i{\nu }+\beta )}\\&\quad \times \int _{a}^{t}(\psi (t)-\psi (s))^{n{\nu }-\gamma }\left( \psi (s)-\psi (a)\right) ^{\gamma -1}\psi '(s)w(s)\textrm{d}s,\; 0<\gamma \le 1, \\&\frac{\left( \Gamma (\beta )b(t)\right) ^n}{\Gamma (n\beta )}\left( \psi (t)-\psi (a)\right) ^{(n-1)(\gamma -1)}\\&\quad \times \int _{a}^{t}(\psi (t)-\psi (s))^{n\beta -1}(\psi (s)-\psi (a))^{\gamma -1}\psi '(s)w(s)\textrm{d}s,\; \gamma >1. \end{aligned}\right. \end{aligned}$$
(B.7)

For the case where \(0 < \gamma \le 1\), the proof will be conducted using mathematical induction. When \(n = 1\), the conclusion is evidently true. Assuming the inequality holds for n, we then obtain

$$\begin{aligned} \begin{aligned} ({{\mathscr {R}}}^{n+1}w)(t)&\le b^2(t)\left( \Gamma (\beta )b(t)\right) ^{n-1}\prod _{i=1}^{n-1}\frac{\Gamma (i\nu )}{\Gamma (i\nu +\beta )}\int _{a}^{t}(\psi (t)-\psi (s))^{\beta -1}\\&\quad \times (\psi (s)-\psi (a))^{\gamma -1}\psi '(s)\\&\quad \times \int _{a}^{s}(\psi (s)-\psi (\tau ))^{n{\nu }-\gamma }(\psi (\tau )-\psi (a))^{\gamma -1}w(\tau )\psi '(\tau )\textrm{d}\tau \textrm{d}s\\&=b(t)(\Gamma (\beta )b(t))^n\prod _{i=1}^{n}\frac{\Gamma (i{\nu })}{\Gamma (i{\nu }+\beta )}\int _{a}^{t}(\psi (\tau )-\psi (a))^{\gamma -1}w(\tau )\\&\quad \times (\psi (t)-\psi (\tau ))^{(n+1){\nu }-\gamma }\psi '(\tau )\textrm{d}\tau , \end{aligned} \end{aligned}$$

which implies that if \(0 < \gamma \le 1\), inequality (B.7) holds.

For the case where \(\gamma > 1\), we also employ mathematical induction. When \(n = 1\), inequality (B.7) holds true. Assuming the inequality is valid for n, we then derive that

$$\begin{aligned} ({{\mathscr {R}}}^{n+1}w)(t)&\le b(t)\frac{(\Gamma (\beta )b(t))^n}{\Gamma (n\beta )}\int _{a}^{t}(\psi (t)-\psi (s))^{\beta -1}(\psi (s)-\psi (a))^{n(\gamma -1)}\nonumber \\&\quad \times \int _{a}^{s}(\psi (s)-\psi (\tau ))^{n\beta -1}(\psi (\tau )-\psi (a))^{\gamma -1}w(\tau )\psi '(\tau )\textrm{d}\tau \textrm{d}s\nonumber \\&\le b(t)\frac{(\Gamma (\beta )b(t))^n}{\Gamma (n\beta )}\int _{a}^{t}(\psi (\tau )-\psi (a))^{\gamma -1}w(\tau )\psi '(\tau )\textrm{d}\tau \nonumber \\&\quad \times \int _{\tau }^{t}(\psi (s){-}\psi (\tau ))^{n\beta -1}(\psi (t){-}\psi (s))^{\beta -1}(\psi (s){-}\psi (a))^{n(\gamma -1)}\psi '(s)\textrm{d}s\nonumber \\&\le \frac{(b(t)\Gamma (\beta ))^{n+1}(\psi (t)-\psi (a))^{n(\gamma -1)}}{\Gamma ((n+1)\beta )}\nonumber \\&\quad \times \int _{a}^{t}w(\tau )(\psi (\tau )-\psi (a))^{\gamma -1}(\psi (t)-\psi (\tau ))^{(n+1)\beta -1}\psi '(\tau )\textrm{d}\tau . \end{aligned}$$
(B.8)

Thus, we have shown that inequality (B.7) holds.

Next, we will prove that \(({{\mathscr {R}}}^nw)(t) \rightarrow 0\) as \(n \rightarrow \infty \). For the case where \(0 < \gamma \le 1\), let

$$\begin{aligned} B_n = b(t)(\Gamma (\beta )b(t))^{n-1}\prod _{i=1}^{n-1}\frac{\Gamma (i {\nu })}{\Gamma (i {\nu }+\beta )}, \quad K_n(t, s) = B_n(\psi (t) - \psi (s))^{n {\nu }-\gamma }. \nonumber \\ \end{aligned}$$
(B.9)

Since \(\frac{B_{n+1}}{B_n} = \Gamma (\beta )b(t)\frac{\Gamma (n {\nu })}{\Gamma (n {\nu }+\beta )} \rightarrow 0\) as \(n \rightarrow \infty \) (Lemma 3.1 is used), it implies that \(K_n(t, s) \rightarrow 0\) as \(n \rightarrow \infty \). Hence, we obtain \(({{\mathscr {R}}}^nw)(t) \rightarrow 0\) as \(n \rightarrow \infty \). Similarly, when \(\gamma > 1\), we have the same results. Then, when \(A = 0\), letting \(n \rightarrow \infty \), we obtain \(w(t) = 0\).

Finally, we claim that

$$\begin{aligned} ({{\mathscr {R}}}^kA(\psi (t)-\psi (a))^{\alpha -1})(t) \le A(\Gamma (\beta )b(t))^kc_k(\psi (t)-\psi (a))^{\alpha -1+k {\nu }}, \end{aligned}$$
(B.10)

where \(c_0 = 1, \; c_k = \prod _{i=0}^{k-1}\left( \frac{\Gamma (i {\nu }+\delta )}{\Gamma (i {\nu }+\delta +\beta )}\right) ,\; k \in {{\mathbb {N}}}^+\).

When \(k=0\), it is obvious to prove that (B.10) holds. Suppose that (B.10) holds for k, then consider the estimate

$$\begin{aligned} \begin{aligned}&({{\mathscr {R}}}^{k+1}A(\psi (t)-\psi (a))^{\alpha -1})(t) \\&= b(t)\int _{a}^{t}(\psi (t){-}\psi (s))^{\beta -1}(\psi (s){-}\psi (a))^{\gamma -1}({{\mathscr {R}}}^kA(\psi (s){-}\psi (a))^{\alpha -1})(s)\psi '(s)\textrm{d}s \\&\le Ab(t)(\Gamma (\beta )b(t))^k(\psi (t)-\psi (a))^{\alpha +\beta +\gamma +k {\nu }-2}\frac{\Gamma (\beta )\Gamma (\alpha +k {\nu }+\gamma -1)}{\Gamma (\alpha +\beta +\gamma +k {\nu }-1)}c_k \\&= A(\Gamma (\beta )b(t))^{k+1}(\psi (t)-\psi (a))^{\alpha +(k+1) {\nu }-1}c_{k+1}, \end{aligned} \end{aligned}$$
(B.11)

which implies (B.10) also holds for \(k+1\). According to mathematical induction, (B.10) holds for any natural number k. Hence, we obtain

$$\begin{aligned} \begin{aligned} w(t)&\le \sum _{k=0}^{\infty }A(\Gamma (\beta )b(t))^kc_k(\psi (t)-\psi (a))^{\alpha -1+k {\nu }} \\&\le A(\psi (t)-\psi (a))^{\alpha -1}F_{ {\nu }, \delta , \delta +\beta }\big (\Gamma (\beta )b(t)(\psi (t)-\psi (a))^{ {\nu }}\big ). \end{aligned} \end{aligned}$$
(B.12)

The proof is completed. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Wang, Z. & Zhang, Z. Global Existence and Convergence of the Solution to the Nonlinear \(\psi \)-Caputo Fractional Diffusion Equation. J Nonlinear Sci 35, 36 (2025). https://doi.org/10.1007/s00332-025-10129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-025-10129-8

Keywords

Mathematics Subject Classification