Abstract
The mutual information, I2, of general spacetime regions is expected to capture the full data of any conformal field theory (CFT). For spherical regions, this data can be accessed from long-distance expansions of the mutual information of pairs of regions as well as of suitably chosen linear combinations of mutual informations involving more than two regions and their unions — namely, the N-partite information, IN. In particular, the leading term in the I2 long-distance expansion is fully determined by the spin and conformal dimension of the lowest-dimensional primary of the theory. When the operator is a scalar, an analogous formula for the tripartite information I3 contains information about the OPE coefficient controlling the fusion of such operator into its conformal family. When it is a fermionic field, the coefficient of the leading term in I3 vanishes instead. In this paper we present an explicit general formula for the long-distance four-partite information I4 of general CFTs whose lowest-dimensional operator is a fermion ψ. The result involves a combination of four-point and two-point functions of ψ and \( \overline{\psi} \) evaluated at the locations of the regions. We perform explicit checks of the formula for a (2 + 1)-dimensional free fermion in the lattice finding perfect agreement. The generalization of our result to the N-partite information (for arbitrary N) is also discussed. Similarly to I3, we argue that I5 vanishes identically at leading order for general fermionic theories, while the IN with N = 7, 9, … only vanish when the theory is free.
Article PDF
Avoid common mistakes on your manuscript.
References
R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964) 848 [INSPIRE].
A.S. Wightman, Quantum field theory in terms of vacuum expectation values, Phys. Rev. 101 (1956) 860 [INSPIRE].
P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].
H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].
H. Casini, M. Huerta, R.C. Myers and A. Yale, Mutual information and the F-theorem, JHEP 10 (2015) 003 [arXiv:1506.06195] [INSPIRE].
C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].
S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].
D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional geometry of squashed cones, Phys. Rev. D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].
B.R. Safdi, Exact and numerical results on entanglement entropy in (5+1)-dimensional CFT, JHEP 12 (2012) 005 [arXiv:1206.5025] [INSPIRE].
R.-X. Miao, Universal terms of entanglement entropy for 6d CFTs, JHEP 10 (2015) 049 [arXiv:1503.05538] [INSPIRE].
J.S. Dowker, Entanglement entropy for odd spheres, arXiv:1012.1548 [INSPIRE].
E. Perlmutter, A universal feature of CFT Rényi entropy, JHEP 03 (2014) 117 [arXiv:1308.1083] [INSPIRE].
T. Faulkner, R.G. Leigh and O. Parrikar, Shape dependence of entanglement entropy in conformal field theories, JHEP 04 (2016) 088 [arXiv:1511.05179] [INSPIRE].
P. Bueno, R.C. Myers and W. Witczak-Krempa, Universality of corner entanglement in conformal field theories, Phys. Rev. Lett. 115 (2015) 021602 [arXiv:1505.04804] [INSPIRE].
P. Bueno, R.C. Myers and W. Witczak-Krempa, Universal corner entanglement from twist operators, JHEP 09 (2015) 091 [arXiv:1507.06997] [INSPIRE].
B. Swingle, Structure of entanglement in regulated Lorentz invariant field theories, arXiv:1304.6402 [INSPIRE].
P. Bueno, P.A. Cano and A. Ruipérez, Holographic studies of Einsteinian cubic gravity, JHEP 03 (2018) 150 [arXiv:1802.00018] [INSPIRE].
J. Lee, L. McGough and B.R. Safdi, Rényi entropy and geometry, Phys. Rev. D 89 (2014) 125016 [arXiv:1403.1580] [INSPIRE].
A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Rényi entropy, JHEP 01 (2015) 080 [arXiv:1407.8171] [INSPIRE].
G. Anastasiou, I.J. Araya, A. Argandoña and R. Olea, CFT correlators from shape deformations in cubic curvature gravity, JHEP 11 (2022) 031 [arXiv:2208.00093] [INSPIRE].
S. Baiguera, L. Bianchi, S. Chapman and D.A. Galante, Shape deformations of charged Rényi entropies from holography, JHEP 06 (2022) 068 [arXiv:2203.15028] [INSPIRE].
P. Bueno, P.A. Cano, Á. Murcia and A. Rivadulla Sánchez, Universal feature of charged entanglement entropy, Phys. Rev. Lett. 129 (2022) 021601 [arXiv:2203.04325] [INSPIRE].
C.A. Agón, P. Bueno and H. Casini, Is the EMI model a QFT? An inquiry on the space of allowed entropy functions, JHEP 08 (2021) 084 [arXiv:2105.11464] [INSPIRE].
H. Casini, Entropy localization and extensivity in the semiclassical black hole evaporation, Phys. Rev. D 79 (2009) 024015 [arXiv:0712.0403] [INSPIRE].
H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP 03 (2009) 048 [arXiv:0812.1773] [INSPIRE].
H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].
H. Casini, F.D. Mazzitelli and E. Testé, Area terms in entanglement entropy, Phys. Rev. D 91 (2015) 104035 [arXiv:1412.6522] [INSPIRE].
P. Bueno, H. Casini, O.L. Andino and J. Moreno, Disks globally maximize the entanglement entropy in 2+1 dimensions, JHEP 10 (2021) 179 [arXiv:2107.12394] [INSPIRE].
P. Bueno, H. Casini, O.L. Andino and J. Moreno, Conformal bounds in three dimensions from entanglement entropy, Phys. Rev. Lett. 131 (2023) 171601 [arXiv:2307.05164] [INSPIRE].
H. Casini, M. Huerta, J.M. Magán and D. Pontello, Entanglement entropy and superselection sectors. Part I. Global symmetries, JHEP 02 (2020) 014 [arXiv:1905.10487] [INSPIRE].
H. Casini, M. Huerta, J.M. Magan and D. Pontello, Entropic order parameters for the phases of QFT, JHEP 04 (2021) 277 [arXiv:2008.11748] [INSPIRE].
J. Cardy, Some results on the mutual information of disjoint regions in higher dimensions, J. Phys. A 46 (2013) 285402 [arXiv:1304.7985] [INSPIRE].
J. Long, On co-dimension two defect operators, arXiv:1611.02485 [INSPIRE].
B. Chen and J. Long, Rényi mutual information for a free scalar field in even dimensions, Phys. Rev. D 96 (2017) 045006 [arXiv:1612.00114] [INSPIRE].
B. Chen, L. Chen, P.-X. Hao and J. Long, On the mutual information in conformal field theory, JHEP 06 (2017) 096 [arXiv:1704.03692] [INSPIRE].
P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].
C. Agón and T. Faulkner, Quantum corrections to holographic mutual information, JHEP 08 (2016) 118 [arXiv:1511.07462] [INSPIRE].
H. Casini, E. Testé and G. Torroba, Mutual information superadditivity and unitarity bounds, JHEP 09 (2021) 046 [arXiv:2103.15847] [INSPIRE].
P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].
S.X. Cui et al., Bit threads and holographic monogamy, Commun. Math. Phys. 376 (2019) 609 [arXiv:1808.05234] [INSPIRE].
C.A. Agón, P. Bueno and H. Casini, Tripartite information at long distances, SciPost Phys. 12 (2022) 153 [arXiv:2109.09179] [INSPIRE].
M. Alishahiha, M.R. Mohammadi Mozaffar and M.R. Tanhayi, On the time evolution of holographic n-partite information, JHEP 09 (2015) 165 [arXiv:1406.7677] [INSPIRE].
S. Mirabi, M.R. Tanhayi and R. Vazirian, On the monogamy of holographic n-partite information, Phys. Rev. D 93 (2016) 104049 [arXiv:1603.00184] [INSPIRE].
N. Bao et al., The holographic entropy cone, JHEP 09 (2015) 130 [arXiv:1505.07839] [INSPIRE].
V.E. Hubeny, M. Rangamani and M. Rota, Holographic entropy relations, Fortsch. Phys. 66 (2018) 1800067 [arXiv:1808.07871] [INSPIRE].
V.E. Hubeny, M. Rangamani and M. Rota, The holographic entropy arrangement, Fortsch. Phys. 67 (2019) 1900011 [arXiv:1812.08133] [INSPIRE].
T. He, M. Headrick and V.E. Hubeny, Holographic entropy relations repackaged, JHEP 10 (2019) 118 [arXiv:1905.06985] [INSPIRE].
S. Hernández Cuenca, Holographic entropy cone for five regions, Phys. Rev. D 100 (2019) 026004 [arXiv:1903.09148] [INSPIRE].
M. Fadel and S. Hernández-Cuenca, Symmetrized holographic entropy cone, Phys. Rev. D 105 (2022) 086008 [arXiv:2112.03862] [INSPIRE].
A. Coser, L. Tagliacozzo and E. Tonni, On Rényi entropies of disjoint intervals in conformal field theory, J. Stat. Mech. 1401 (2014) P01008 [arXiv:1309.2189] [INSPIRE].
C. De Nobili, A. Coser and E. Tonni, Entanglement entropy and negativity of disjoint intervals in CFT: some numerical extrapolations, J. Stat. Mech. 1506 (2015) P06021 [arXiv:1501.04311] [INSPIRE].
C.A. Agón, P. Bueno, O. Lasso Andino and A. Vilar López, Aspects of N-partite information in conformal field theories, JHEP 03 (2023) 246 [arXiv:2209.14311] [INSPIRE].
P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: a non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [INSPIRE].
L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, JHEP 10 (2014) 178 [arXiv:1407.6429] [INSPIRE].
M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading, MA, U.S.A. (1995).
H. Isono, On conformal correlators and blocks with spinors in general dimensions, Phys. Rev. D 96 (2017) 065011 [arXiv:1706.02835] [INSPIRE].
C.A. Agon, H. Casini, U. Gürsoy and G. Planella Planas, Mutual information from modular flow in CFTs, arXiv:2409.01406 [INSPIRE].
M. Headrick, Entanglement Rényi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].
R. Haag, N.M. Hugenholtz and M. Winnink, On the equilibrium states in quantum statistical mechanics, Commun. Math. Phys. 5 (1967) 215 [INSPIRE].
R. Haag, Local quantum physics: fields, particles, algebras, (1992) [INSPIRE].
Acknowledgments
We thank Horacio Casini and Gonzalo Torroba for useful discussions. PB was supported by a Ramón y Cajal fellowship (RYC2020-028756-I) from Spain’s Ministry of Science and Innovation and by the grant PID2022-136224NB-C22, funded by MCIN/AEI/10.13039/501100011033/FEDER, UE. PB and GvdV were supported by a Proyecto de Consolidación Investigadora (CNS2023-143822) from Spain’s Ministry of Science, Innovation and Universities. The work of CA is supported by the Netherlands Organisation for Scientific Research (NWO) under the VICI grant VI.C.202.104.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2409.03821
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Agón, C.A., Bueno, P. & van der Velde, G. Long-distance N-partite information for fermionic CFTs. J. High Energ. Phys. 2024, 178 (2024). https://doi.org/10.1007/JHEP12(2024)178
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2024)178