Abstract
We consider Einstein-Maxwell-dilaton theory in four dimensions including the Kaluza-Klein theory and obtain the general asymptotic solutions in Bondi gauge. We find that there are three different types of news functions representing gravitational, electromagnetic, and scalar radiations. The mass density at any angle of the system can only decrease whenever there is any type of news function. The solution space of the Kaluza-Klein theory is also lifted to five dimensions. We also compute the asymptotic symmetries in both four dimensional Einstein-Maxwell-dilaton theory and five dimensional pure Einstein theory. We find that the symmetry algebras of the two theories are the same.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Land. A 269 (1962) 21 [INSPIRE].
J. de Boer and S.N. Solodukhin, A Holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].
G. Arcioni and C. Dappiaggi, Exploring the holographic principle in asymptotically fiat space-times via the EMS group, Nucl. Phys. B 674 (2003) 553 [hep-th/0306142] [INSPIRE].
G. Arcioni and C. Dappiaggi, Holography in asymptotically fiat space-times and the EMS group, Class. Quant. Grav. 21 (2004) 5655 [hep-th/0312186] [INSPIRE].
C. Dappiaggi, EMS field theory and holography in asymptotically fiat space-times, JHEP 11 (2004) 011 [hep-th/0410026] [INSPIRE].
C. Dappiaggi, V. Moretti and N. Pinamonti, Rigorous steps towards holography in asymptotically fiat spacetimes, Rev. Math. Phys. 18 (2006) 349 [gr-qc/0506069] [INSPIRE].
G. Barnich and C. Troessaert, Symmetries of asymptotically fiat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].
G. Barnich and C. Troessaert, Aspects of the BMSjCFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].
G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS (CNCFG2010) 010 (2010) [Ann. U. Craiova Phys. 21 (2011) Sll] [arXiv:1102.4632] [INSPIRE].
G. Barnich and C. Troessaert, EMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].
G. Barnich and C. Troessaert, Comments on holographic current algebras and asymptotically fiat four dimensional spacetimes at null infinity, JHEP 11 (2013) 003 [arXiv:1309.0794] [INSPIRE].
L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and Superrotations at the Black Hole Horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].
A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].
A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].
A. Strominger, On EMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].
T. He, V. Lysov, P. Mitra and A. Strominger, EMS supertranslations and Weinberg's soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].
T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].
T. He, P. Mitra and A. Strominger, 2D Kac-Moody Symmetry of 4D Yang-Mills Theory, JHEP 10 (2016) 137 [arXiv:1503.02663] [INSPIRE].
E. Conde and P. Mao, Remarks on asymptotic symmetries and the subleading soft photon theorem, Phys. Rev. D 95 (2017) 021701 [arXiv:1605.09731] [INSPIRE].
E. Conde and P. Mao, EMS Supertranslations and Not So Soft Gravitons, JHEP 05 (2017) 060 [arXiv:1612.08294] [INSPIRE].
P. Mao and J.-B. Wu, Note on asymptotic symmetries and soft gluon theorems, Phys. Rev. D 96 (2017) 065023 [arXiv:1704.05740] [INSPIRE].
A. Strominger and A. Zhiboedov, Gravitational Memory, EMS Supertranslations and Soft Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].
S. Pasterski, A. Strominger and A. Zhiboedov, New Gravitational Memories, JHEP 12 (2016) 053 [arXiv:1502.06120] [INSPIRE].
P. Mao and X. Wu, More on gravitational memory, JHEP 05 (2019) 058 [arXiv:1812.07168] [INSPIRE].
H. Godazgar, M. Godazgar and C.N. Pope, Subleading EMS charges and fake news near null infinity, JHEP 01 (2019) 143 [arXiv:1809.09076] [INSPIRE].
H. Godazgar, M. Godazgar and C.N. Pope, New dual gravitational charges, Phys. Rev. D 99 (2019) 024013 [arXiv:1812.01641] [INSPIRE].
H. Godazgar, M. Godazgar and C.N. Pope, Tower of subleading dual EMS charges, JHEP 03 (2019) 057 [arXiv:1812.06935] [INSPIRE].
U. Kol and M. Porrati, Properties of Dual Supertranslation Charges in Asymptotically Flat Spacetimes, Phys. Rev. D 100 (2019) 046019 [arXiv:1907.00990] [INSPIRE].
H. Godazgar, M. Godazgar and C.N. Pope, Dual gravitational charges and soft theorems, arXiv:1908.01164 [INSPIRE].
H. Godazgar, M. Godazgar and C.N. Pope, Taub-NUT from the Dirac monopole, arXiv:1908.05962 [INSPIRE].
M.G.J. van der Burg, Gravitational waves in general relativity. 10, Asymptotic expansions for the Einstein-Maxwell field, Proc. Roy. Soc. Land. A 310 (1969) 221.
L. Bieri, P. Chen and S.-T. Yau, Null Asymptotics of Solutions of the Einstein-Maxwell Equations in General Relativity and Gravitational Radiation, Adv. Theor. Math. Phys. 15 (2011) 1085 [arXiv:1011.2267] [INSPIRE].
K. Tanabe, N. Tanahashi and T. Shiromizu, On asymptotic structure at null infinity in five dimensions, J. Math. Phys. 51 (2010) 062502 [arXiv:0909.0426] [INSPIRE].
K. Tanabe, S. Kinoshita and T. Shiromizu, Asymptotic flatness at null infinity in arbitrary dimensions, Phys. Rev. D 84 (2011) 044055 [arXiv:1104.0303] [INSPIRE].
M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].
R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically fiat space-times, Proc. Roy. Soc. Land. A 270 (1962) 103 [INSPIRE].
G. Barnich, P.-H. Lambert and P. Mao, Three-dimensional asymptotically fiat Einstein-Maxwell theory, Class. Quant. Grav. 32 (2015) 245001 [arXiv:1503.00856] [INSPIRE].
A.I. Janis and E.T. Newman, Structure of Gravitational Sources, J. Math. Phys. 6 (1965) 902 [INSPIRE].
G. Barnich and P.-H. Lambert, Einstein- Yang-Mills theory: Asymptotic symmetries, Phys. Rev. D 88 (2013) 103006 [arXiv:1310.2698] [INSPIRE].
A. Ashtekar, J. Bicak and B.G. Schmidt, Behavior of Einstein-Rosen waves at null infinity, Phys. Rev. D 55 (1997) 687 [gr-qc/9608041] [INSPIRE].
A. Ashtekar, J. Bicak and B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity, Phys. Rev. D 55 (1997) 669 [gr-qc/9608042] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1909.00970
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Lü, H., Mao, P. & Wu, JB. Asymptotic structure of Einstein-Maxwell-dilaton theory and its five dimensional origin. J. High Energ. Phys. 2019, 5 (2019). https://doi.org/10.1007/JHEP11(2019)005
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2019)005